The aim of this paper is to improve the understanding of high cycle thermal fatigue crazing observed in some areas of residual heat removal (RHR) systems made of 304L stainless steel in PWR nuclear plants. High cycle thermal crazing and the absence of crazing under purely mechanical loading are explained through the arrest of cracks initiated at the surface in the thickness of the component for thermal fatigue. This arrest is due to high stress gradients in the case of thermal loading due to the high frequency of the thermal load. It is shown that close to the weld, the crack network configuration is related to the tensile weld residual stress field in accordance with the detrimental effect of tensile mean stress on fatigue life. However, these results are in apparent contradiction with the material uniaxial fatigue tests, where a beneficial effect of tensile mean stress is observed in load-controlled fatigue tests. Moreover, it is shown that near the weld, the absence of a crack network is related to the compressive weld residual stress field in accordance with the beneficial effect of compressive mean stress on fatigue life. This result is however, in apparent contradiction with the observation of crazing far from the weld under a highly compressive stress. These contradictions may be explained by the detrimental effect of prehardening in strain control and the beneficial effect of prehardening in stress control for stainless steels. From these results it is concluded that shot peening which is usually considered to be beneficial for ferritic steel may be detrimental in high cycle thermal fatigue for stainless steels. It may also be concluded that in high cycle thermal fatigue of stainless steel, improvement of fatigue life would be possible with heat treatment by reduction of strain-hardening rather than with shot peening.

1.
Cornuel
,
F.
, and
Fradet
,
F.
, 2003, Internal Report Eléctricité de France, No. EDF/DPN-D5710/ECH/2003/001098/00.
2.
Framatome Internal Report
, No. ITMC DC 362 1998.
3.
Faidy
,
C.
, 2002, “
La Fatigue Thermique Dans les Centrales Nucleaires. Enseignement du Retour d’Expérience
,” Contribution of materials investigation to the resolution of problems encountered in PWR, International Symposium Fontevraud 5, September 23–27.
4.
Molinié
,
E.
,
Monteil
,
N.
,
Delatouche
,
S.
,
Roux
,
S.
,
Robert
,
N.
, and
Pages
,
C.
, 2002, “
Caractérisation des Tronçon RRA (Circuit de Refrigeration du Reacteur a l’Arrêt) 900-13 Mwe Deposés: Synthèse des Enseignements Acquis
,” Contribution of Matérials Investigation to the Resolution of Problems Encountered in PWR, International Symposium Fontevraud 5, September 23–27.
5.
Solomon
,
H. D.
,
Vallee
,
A. J.
,
Amzallag
,
C.
, and
De Lair
,
R. E.
, 2005, “
Influence of Mean Stress on the Fatigue Behaviour of 304L SS in Air and PWR Water
,”
Proceedings of the ASME-PVP Conference
, Denver, CO, July 17–21.
6.
Pasutto
,
T.
,
Peniguel
,
C.
,
Sakiz
,
M.
, and
Stephan
,
J. M.
, 2005, “
Unsteady Fluid/Solid Numerical Simulation to Evaluate Thermal Solicitation in PWR Nuclear Plant Mixing Zones
,”
Proceeding of the ASME-PVP Conference
, Denver, CO, July 17–21.
7.
Musi
,
S.
, and
Beaud
,
F.
, 2003, “
An Analytical Model for Thermal Fatigue Crack Initiation and Propagation in Mixing Zones of Piping Systems
,”
Proceeding of the ASME-PVP Conference
, Cleveland, OH, July 20–24.
8.
Hadar
,
N.
, 2003, “
Fatigue Thermique d’un Acier Inoxydable Austénitique 304L Simulation de L’Amorçage et de la Croissance des Fissures Courtes en Fatigue Isotherme et Anisotherme
,” Thèse de Doctorat, Ecole des Mines de Paris.
9.
Herbez
,
E.
, and
Goltrant
,
O.
, 1998, Internal Report Eléctricité de France, No. EDF/GDL-D5710/ECH/1998/009885/01.
10.
Petitjean
,
S.
, and
Mendez
,
R.
, 2005, “
Influence de l’État de Surface sur la Resistance en Fatigue à Grand Nombre de Cycles de l’Acier Inoxydable Austenitique 304L
,” Fatigue et État de Surface, 24ème Congres de Printemps, SFM2, Senlis, France, May 10–11.
11.
Cornuel
,
F.
, and
Fradet
,
F.
, 2004, Internal Report Eléctricité de France, No. EDF/DPN-D5710/IECH/2002/008081/1.
12.
Razakanaivo
,
A.
, 2000, “
Tubular Welding Numerical Simulation Experimental Validation
,” IERS6, Oxford, UK, August.
13.
Devaux
,
J.
, 1999, “
Simulation Numérique du Soudage. Calculs Thermo-Mécanique des Passes 1 à 5
,” Internal Report Framatome, No. LL/99.4564.
14.
Lejail
,
Y.
, 1999, “
Caractéristiques de Traction Monotone du 316L SPH
,” Internal Report Commisariat à l’Eérgie Atomique, No. SERSI/40066.
16.
Desroche
,
X.
, Internal Report Eléctricité de France, No. EDF-RD-AMA-HI-75/00/016/
17.
Taheri
,
S.
, 1989, “
Three-dimensional Local Effect and Shell Theories
,”
Int. J. Pressure Vessels Piping
0308-0161, (
36
), pp.
225
246
.
18.
Taheri
,
S.
, 2004, “
High Cycle Thermal Fatigue in a Mixing Zone of Auxiliary Cooling System
,”
Proceeding of the ASME-PVP Conference
, San Diego, CA, July 25–29.
19.
Socie
,
D. F.
, and
Marquis
,
G. B.
, 2000,
Multiaxial Fatigue
,
SAE International
.
20.
Seyedi
,
M.
,
Taheri
,
S.
,
Hild
,
F.
, and
Stephan
,
J. M.
, 2003, “
Study of Crack Propagation in a Multicracked Structure in Thermal Fatigue
,”
Proceeding of the SMIRT 17
, Prague.
21.
Lesur
,
N.
, 2005, “
Comportement des Fissures Courtes de Fatiguedans un Acier 304L
,” Thèse de doctorat, ENSMA.
22.
Raju
,
I. S.
,
Atluri
,
S. N.
, and
Newman
,
J. C.
, 1999, “
Stress Intensity Factors for Small Surface and Corner Cracks in Plates
,” Fracture Mechanics Perspectives and Directions, ASME-STP 1020.
23.
Maillot
,
V.
,
Fissolo
,
A.
,
Degallaix
,
G.
, and
Degallaix
,
S.
, 2005, “
Thermal Fatigue Crack Networks Parameters Stability and Experimental Study
,”
Int. J. Solids Struct.
0020-7683,
42
(
1
), pp.
759
764
.
24.
Doquet
,
V.
, and
Taheri
,
S.
, 2000, “
Effet d’un Pré-Écrouissage ou d’un sur-Écrouissage sur la Durée de vie en Fatigue de Divers Aciers à Contrainte ou Déformation Imposée
,” Bulletin SFM, Revue Française de Mécanique, No. 1.
25.
Taheri
,
S.
, and
Doquet
,
V.
, 2001, “
Evaluation of Non-Conservatism of Combined Rainflow Counting and Miner’s Rule for Damage Cumulation in Strain Controlled
,” SMIRT 16, Washington, D.C.
26.
Taheri
,
S.
, 1996, “
Low Cycle Fatigue Damage Accumulation Rule for Nonproportional Loading
,”
Multiaxial and Fatigue Design
, ESIS 21,
Mechanical Engineering Publications
, London, pp. 283–299.
27.
Taheri
,
S.
, 2004, “
An Attempt to Analyze Crack Initiation Under High Cycle Thermal Fatigue on a Mixing Zone of Auxiliary Cooling System
,”
Proceeding of the 7th Biaxial/Multiaxial Fatigue
, Berlin.
28.
Dang-Van
,
K.
,
Griveau
,
B.
, and
Message
,
O.
, 1989, “
On a New Multiaxial Fatigue Limit Criterion: Theory and Application
,”
Proceedings of the Biaxial/Multiaxial Fatigue
,
Brown/Miller
, Berlin.
29.
Amzallage
,
C.
, 2003, Internal Report Electricité de France, No. EDF/SEPTEN ENESRE030003.
30.
Taheri
,
S.
, and
Lorentz
,
E.
, 1999, “
An Elastic Plastic Constitutive Law for the Description of Uniaxial and Multiaxial Ratchetting
,”
Int. J. Plast.
0749-6419,
5
, pp.
1159
.
You do not currently have access to this content.