Recent test data illustrate potentially significant effects of light water reactor (LWR) coolant environments on the fatigue resistance of carbon and low-alloy steels. The crack initiation and crack growth characteristics of carbon and low-alloy steels in LWR environments are presented. Decreases in fatigue lives of these steels in high-dissolved-oxygen water are caused primarily by the effect of environment on growth of short cracks <100 μm in depth. The material and loading parameters that influence fatigue life in LWR environments are defined. Statistical models have been developed to estimate the fatigue lives of these steels in LWR environments, and design fatigue curves have been developed for carbon and low-alloy steel components in LWR environments. The significance of environmental effect on the current Code design curve is evaluated.

1.
Atkinson, J. D., Bulloch, J. H., and Forrest, J. E., 1986, “A Fractographic Study of Fatigue Cracks Produced in A533B Pressure Vessel Steel Exposed to Simulated PWR Primary Water Environments,” Proceedings, 2nd International Atomic Energy Agency Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP-0067, MEA-2090, Vol. 2, pp. 269–290.
2.
Atkinson
J. D.
,
Yu
J.
, and
Chen
Z. -Y.
,
1996
, “
An Analysis of the Effects of Sulfur Content and Potential on Corrosion Fatigue Crack Growth in Reactor Pressure Vessel Steels
,”
Corrosion Science
, Vol.
38
(
5
), pp.
755
765
.
3.
Bulloch
J. H.
,
1989
, “
A Review of Fatigue Crack Extension Behavior of Ferritic Reactor Pressure Vessels Materials in Pressurized Water Reactor Environments
,”
Research Mechanics
, Vol.
26
, pp.
95
172
.
4.
Choi, H., Smialowska, S., and Macdonald, D. D., 1983, “Stress Corrosion Cracking of ASME SA508-C12 Pressure Vessel Steel,” EPRI-2853, Electric Power Research Institute, Palo Alto, CA, Section 4.
5.
Chopra
O. K.
, and
Shack
W. J.
,
1995
a, “
Effects of LWR Environments on Fatigue Life of Carbon and Low-Alloy Steels
,” Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations,
ASME PVP
-Vol.
306
, S. Yukawa, New York, NY, pp.
95
109
.
6.
Chopra, O. K., and Shack, W. J., 1995b, “Effects of Material and Loading Variables on Fatigue Life of Carbon and Low-Alloy Steels in LWR Environments,” Transactions of 13th International Conference on Structural Mechanics in Reactor Technology (SMiRT 13), Vol. II, M. M. Rocha and J. D. Riera, eds., Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, pp. 551–562.
7.
Chopra
O. K.
, and
Shack
W. J.
,
1996
, “
Effects of LWR Coolant Environments on Fatigue S-N Curves for Carbon and Low-Alloy Steels
,” Pressure Vessel and Piping Code and Standards,
ASME PVP
-Vol.
339
, T. S. Esselman, ed., American Society of Mechanical Engineers, New York, pp.
185
198
.
8.
Chopra, O. K., and Shack, W. J., 1997, “Evaluation of Effects of LWR Coolant Environments on Fatigue Life of Carbon and Low-Alloy Steels,” Effects of the Environment on the Initiation of Crack Growth, ASTM STP 1298, W. A. Van Der Sluys, R. S. Piascik, and R. Zawierucha, eds., American Society for Testing and Materials, Philadelphia, pp. 247–266.
9.
Chopra
O. K.
, and
Shack
W. J.
,
1998
a, “
Low-Cycle Fatigue of Piping and Pressure Vessel Steels in LWR Environments
,”
Nuclear Engineering Design
, Vol.
184
, pp.
49
76
.
10.
Chopra, O. K., and Shack, W. J., 1998b, “Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low-Alloy Steels,” NUREG/CR-6583, ANL-97/18.
11.
Cullen, W. H., Kemppainen, M., Ha¨nninen, H., and To¨rro¨nen, K., 1985, “The Effects of Sulfur Chemistry and Flow Rate on Fatigue Crack Growth Rates in LWR Environments,” NUREG/CR-4121.
12.
Deardorff, A. F., and Smith, J. K., 1994, “Evaluation of Conservatisms and Environmental Effects in ASME Code, Section III, Class 1 Fatigue Analysis,” SAND94-0187, prepared by Structural Integrity Associates, San Jose, CA, under contract to Sandia National Laboratories, Albuquerque, NM.
13.
de los Rios
E. R.
,
Tang
Z.
, and
Miller
K. J.
,
1984
, “
Short Crack Fatigue Behavior in a Medium Carbon Steel
,”
Fatigue Fracture Engineering, Materials and Structures
, Vol.
7
, pp.
97
108
.
14.
de los Rios, E. R., Navarro, A., and Hussain, K., 1992, “Microstructural Variations in Short Fatigue Crack Propagation of a C-Mn Steel,” Short Fatigue Cracks, ESIS 13, M. J. Miller and E. R. de los Rios, eds., Mechanical Engineering Publication, London, U.K., pp. 115–132.
15.
Dowling, N. E., 1977, “Crack Growth During Low-Cycle Fatigue of Smooth Axial Specimens,” Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, ASTM STP 637, American Society for Testing and Materials, Philadelphia, PA, pp. 97–121.
16.
Eason
E. D.
,
Nelson
E. E.
, and
Gilman
J. D.
,
1994
, “
Modeling of Fatigue Crack Growth Rate for Ferritic Steels in Light Water Reactor Environments
,” Changing Priorities of Code and Standards,
ASME PVP
-Vol.
286
, pp.
131
142
.
17.
Ford, F. P., Ranganath, S., and Weinstein, D., 1993, “Environmentally Assisted Fatigue Crack Initiation in Low-Alloy Steels—A Review of the Literature and the ASME Code Design Requirements,” EPRI Report TR-102765.
18.
Gavenda
D. J.
,
Luebbers
P. R.
, and
Chopra
O. K.
,
1997
, “
Crack Initiation and Crack Growth Behavior of Carbon and Low-Alloy Steels
,”
Fatigue and Fracture Journal
, Vol.
350
, S. Rahman, K. K. Yoon, S. Bhandari, R. Warke, and J. M. Bloom, eds., American Society of Mechanical Engineers, New York, NY, pp.
243
255
.
19.
Gross, J. H., Gucer, D. E., and Stout, R. D., 1954, “The Plastic Fatigue Strength of Pressure Vessel Steels,” The Welding Journal Research Supplement, Jan.
20.
Gross, J. H., and Stout, R. D., 1955, “Plastic Fatigue Properties of High-Strength Pressure Vessel Steels,” The Welding Journal Research Supplement, Apr.
21.
Hale, D. A., Wilson, S. A., Kiss, E., and Gianuzzi, A. J., 1977, “Low Cycle Fatigue Evaluation of Primary Piping Materials in a BWR Environment,” GEAP-20244, U.S. Nuclear Regulatory Commission.
22.
Hale
D. A.
,
Wilson
S. A.
,
Kass
J. N.
, and
Kiss
E.
,
1981
, “
Low Cycle Fatigue Behavior of Commercial Piping Materials in a BWR Environment
,”
ASME Journal of Engineering Materials and Technology
, Vol.
103
, pp.
15
25
.
23.
Higuchi, M., 1992, Ishikawajima-Harima Heavy Industries Co., Japan, private communication to M. Prager of the Pressure Vessel Research Council.
24.
Higuchi, M., 1995, presented at Working Group Meeting on S-N Data Analysis, Pressure Vessel Research Council, Milwaukee, WI, June.
25.
Higuchi, M., 1996, presented at Working Group Meeting on S-N Data Analysis, Pressure Vessel Research Council, Orlando, FL, Apr.
26.
Higuchi
M.
, and
Iida
K.
,
1991
, “
Fatigue Strength Correction Factors for Carbon and Low-Alloy Steels in Oxygen-Containing High-Temperature Water
,”
Nuclear Engineering Design
, Vol.
129
, pp.
293
306
.
27.
Higuchi
M.
,
Iida
K.
, and
Asada
Y.
,
1995
, “
Effects of Strain Rate Change on Fatigue Life of Carbon Steel in High-Temperature Water
,” Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations,
ASME PVP
-Vol.
306
, S. Yukawa, ed., pp.
111
116
.
28.
Higuchi, M., Iida, K., and Asada, Y., 1997, “Effects of Strain Rate Change on Fatigue Life of Carbon Steel in High-Temperature Water,” Effects of the Environment on the Initiation of Crack Growth, ASTM STP 1298, W. A. Van Der Sluys, R. S. Piascik, and R. Zawierucha, eds., American Society for Testing and Materials, Philadelphia, PA, pp. 216–231.
29.
Iida
K.
,
1992
, “
A Review of Fatigue Failures in LWR Plants in Japan
,”
Nuclear Engineering Design
, Vol.
138
, pp.
297
312
.
30.
James
L. A.
,
1995
, “
The Effect of Water Flow Rate Upon the Environmentally-Assisted Cracking Response of a Low-Alloy Steel
,”
ASME JOURNAL OF PRESSURE VESSEL TECHNOLOGY
, Vol.
117
, pp.
238
244
.
31.
Kanasaki
H.
,
Hayashi
M.
,
Iida
K.
, and
Asada
Y.
,
1995
, “
Effects of Temperature Change on Fatigue Life of Carbon Steel in High-Temperature Water
,” Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations,
ASME PVP
-Vol.
306
, S. Yukawa, ed., pp.
117
122
.
32.
Katada
Y.
,
Nagata
N.
, and
Sato
S.
,
1993
, “
Effect of Dissolved Oxygen Concentration on Fatigue Crack Growth Behavior of A533 B Steel in High-Temperature Water
,”
ISIJ International
, Vol.
33
(
8
), pp.
877
883
.
33.
Keisler, J., Chopra, O. K., and Shack, W. J., 1995, “Fatigue Strain-Life Behavior of Carbon and Low-Alloy Steels, Austenitic Stainless Steels, and Alloy 600 in LWR Environments,” NUREG/CR-6335, ANL-95/15.
34.
Keisler
J.
,
Chopra
O. K.
, and
Shack
W. J.
,
1996
, “
Fatigue Strain-Life Behavior of Carbon and Low-Alloy Steels, Austenitic Stainless Steels, and Alloy 600 in LWR Environments
,”
Nuclear Engineering Design
, Vol.
167
, pp.
129
154
.
35.
Kooistra
L. F.
,
Lange
E. A.
, and
Pickett
A. G.
,
1964
, “
Full-Size Pressure Vessel Testing and Its Application to Design
,”
Journal of Engineering Power
, Vol.
86
, pp.
419
428
.
36.
Kussmaul, K., Rintamaa, R., Jansky, J., Kemppainen, M., and To¨rro¨nen, K., 1983, “On the Mechanism of Environmental Cracking Introduced by Cyclic Thermal Loading,” IAEA Specialists Meeting Corrosion and Stress Corrosion of Steel Pressure Boundary Components and Steam Turbines, VTT Symp. 43, Espoo, Finland, pp. 195–243.
37.
Kussmaul
K.
,
Blind
D.
, and
Jansky
J.
,
1984
, “
Formation and Growth of Cracking in Feed Water Pipes and RPV Nozzles
,”
Nuclear Engineering Design
, Vol.
81
, pp.
105
119
.
38.
Langer
B. F.
,
1962
, “
Design of Pressure Vessels for Low-Cycle Fatigue
,”
ASME Journal of Basic Engineering
, Vol.
84
, pp.
389
402
.
39.
Lenz, E., Stellwag, B., and Wieling, N., 1983, “The Influence of Strain Induced Corrosion Cracking on the Crack Initiation in Low Alloy Steels in HT-Water A Relation Between Monotonic and Cyclic Crack Initiation Behavior,” IAEA Specialists Meeting Corrosion and Stress Corrosion of Steel Pressure Boundary Components and Steam Turbines, VTT Symposium 43, Espoo, Finland, pp. 243–267.
40.
Low, A. C., 1956, “Short Endurance Fatigue,” International Conference of Fatigue of Metals, The Institute of Mechanical Engineers, London, U.K., and ASME, New York, NY.
41.
Manjoine, M. J., and Johnson, R. L., 1988, “Fatigue Design Curves for Carbon and Low Alloy Steels up to 700°F (371°C),” Pressure Vessel and Piping Conference, ASME Paper No. 88-PVP-6, American Society of Mechanical Engineers, New York, NY.
42.
Manjoine, M. J., and Johnson, R. L., 1994, “Fatigue Design Curves for Carbon and Low Alloy Steels up to 700°F (371°C),” Material Durability/Life Prediction Modeling: Materials for the 21st Century, ASME PVP-Vol. 290.
43.
Mayfield, M. E., Rodabaugh, E. C., and Eiber, R. J., 1979, “A Comparison of Fatigue Test Data on Piping with the ASME Code Fatigue Evaluation Procedure,” ASME Paper No. 79-PVP-92, American Society of Mechanical Engineers, New York, NY.
44.
Mehta
H. S.
, and
Gosselin
S. R.
,
1996
, “
An Environmental Factor Approach to Account for Reactor Water Effects in Light Water Reactor Pressure Vessel and Piping Fatigue Evaluations
,” Fatigue and Fracture, Volume I,
ASME PVP
-Vol.
323
, H. S. Mehta, ed., pp.
171
185
.
45.
Miller
K. J.
,
1995
, “
Damage in Fatigue: A New Outlook
,” International Pressure Vessels and Piping Codes and Standard: Volume 1—Current Applications,
ASME PVP
-Vol.
313
-
1
, K. R. Rao and Y. Asada, eds., pp.
191
192
.
46.
Mizuno, T., Pednekar, S., Smialowska, S., and Macdonald, D. D., 1983, “Corrosion Behavior of Carbon Steel in Oxygenated Water Environments,” Sect. 2, EPRI-2853, Electric Power Research Institute, Palo Alto, CA.
47.
NRC, 1979, “Cracking in Feedwater System Piping,” IE Bulletin No. 79-13, U.S. Nuclear Regulatory Commission, Washington, DC.
48.
NRC, 1993, “Thermal Fatigue Cracking of Feedwater Piping to Steam Generators,” NRC Information Notice 93-20, U.S. Nuclear Regulatory Commission, Washington, DC.
49.
Nagata
N.
,
Sato
S.
, and
Katada
Y.
,
1991
, “
Low-Cycle Fatigue Behavior of Pressure Vessel Steels in High-Temperature Pressurized Water
,”
ISIJ International
, Vol.
31
(
1
), pp.
106
114
.
50.
Nakao, G., Higuchi, M., Kanasaki, H., Iida, K., and Asada, Y., 1997, “Effects of Temperature and Dissolved Oxygen Content on Fatigue Life of Carbon and Low-Alloy Steels in LWR Water Environment,” Effects of the Environment on the Initiation of Crack Growth, ASTM STP 1298, W. A. Van Der Sluys, R. S. Piascik, and R. Zawierucha, eds., American Society for Testing and Materials, Philadelphia, PA, pp. 232–244.
51.
O’Donnell
T. P.
, and
O’Donnell
W. J.
,
1995
, “
Stress Intensity Values in Conventional S-N Fatigue Specimens
,” Fatigue and Crack Growth: International Pressure Vessels and Piping Codes and Standards: Volume 1—Current Applications,
ASME PVP
-Vol.
313
-
1
, K. R. Rao and Y. Asada, eds., pp.
195
197
.
52.
Pleune
T. T.
, and
Chopra
O. K.
,
1997
, “
Artificial Neural Networks and Effects of Loading Conditions on Fatigue Life of Carbon and Low-Alloy Steels
,”
Fatigue and Fracture Journal
, Vol.
350
, S. Rahman, K. K. Yoon, S. Bhandari, R. R. Warke, and J. M. Bloom, eds., American Society of Mechanical Engineers, New York, NY, pp.
413
423
.
53.
Ranganath, S., Kass, J. N., and Heald, J. D., 1982, “Fatigue Behavior of Carbon Steel Components in High-Temperature Water Environments,” BWR Environmental Cracking Margins for Carbon Steel Piping, Appendix 3, EPRI NP-2406, Electric Power Research Institute, Palo Alto, CA.
54.
Sachs, G., Gerberich, W. W., and Weiss, V., 1960, “Interim Technical #5,” Contract No. AT(30-1), Syracuse University Research Institute, Metallurgical Research Laboratory Report No. MET 575-6011 TS, Jan.
55.
Stout, R. D., 1960, Lehigh University, private communication to L. F. Kooistra, Babcock and Wilcox Company.
56.
Suh
C. M.
,
Yuuki
R.
, and
Kitagawa
H.
,
1985
, “
Fatigue Microcracks in a Low Carbon Steel
,”
Fatigue Fracture Engineering Materials and Structures
, Vol.
8
, pp.
193
203
.
57.
Terrell, J. B., 1988a, “Fatigue Strength of Smooth and Notched Specimens of ASME SA 106-B Steel in PWR Environments,” NUREG/CR-5136, MEA-2289, Materials Engineering Associates, Inc., Lanham, MD.
58.
Terrell
J. B.
,
1988
b, “
Effect of Cyclic Frequency on the Fatigue Life of ASME SA 106-B Piping Steel in PWR Environments
,”
Journal of Material Engineering
, Vol.
10
, pp.
193
203
.
59.
Tokaji
K.
,
Ogawa
T.
, and
Osako
S.
,
1988
, “
The Growth of Microstructurally Small Fatigue Cracks in a Ferritic-Pearlitic Steel
,”
Fatigue Fracture Engineering Materials and Structure
, Vol.
11
, pp.
331
342
.
60.
Tokaji, K., and Ogawa, T., 1992, “The Growth of Microstructurally Small Fatigue Cracks in Metals,” Short Fatigue Cracks, ESIS 13, M. J. Miller and E. R. de los Rios, eds., Mechanical Engineering Publication, London, U.K., pp. 85–99.
61.
To¨rro¨nen, K., Kempainen, M., and Ha¨nninen, H., 1984, “Fractographic Evaluation of Specimens of A533B Pressure Vessel Steel,” EPRI Report NP-3483, Project 1325-7, Electric Power Research Institute, Palo Alto, CA.
62.
Van Der Sluys, W. A., 1993, “Evaluation of the Available Data on the Effect of the Environment on the Low Cycle Fatigue Properties in Light Water Reactor Environments,” Proceedings, 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, R. E. Gold and E. P. Simonen, eds., The Metallurgical Society, Warrendale, PA, pp. 1–4.
63.
Van Der Sluys, W. A., and Emanuelson, R. H., 1993, “Environmental Acceleration of Fatigue Crack Growth in Reactor Pressure Vessel Materials,” EPRI Report TR-102796, Electric Power Research Institute, Palo Alto, CA.
64.
Van Der Sluys
W. A.
, and
Yukawa
S.
,
1995
, “
Status of PVRC Evaluation of LWR Coolant Environmental Effects on the S-N Fatigue Properties of Pressure Boundary Materials
,” Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations,
ASME PVP
-Vol.
306
, S. Yukawa, ed., pp.
47
58
.
65.
Ware, A. G., Morton, D. K., and Nitzel, M. E., 1995, “Application of NUREG/CR-5999 Interim Design Curves of Selected Nuclear Power Plant Components,” NUREG/CR-6260, INEL-95/0045.
66.
Wire
G. L.
, and
Li
Y. Y.
,
1996
, “
Initiation of Environmentally-Assisted Cracking in Low-Alloy Steels
,” Fatigue and Fracture, Volume 1,
ASME PVP
-Vol.
323
, H. S. Mehta, ed., pp.
269
289
.
This content is only available via PDF.
You do not currently have access to this content.