Abstract

The decommissioning of offshore oil and gas (O&G) facilities poses significant challenges due to high costs, operational risks, social impacts, and environmental protection concerns. Multi-criteria decision analysis (MCDA) emerges as a vital tool to navigate these complexities, enabling stakeholders to evaluate diverse decommissioning alternatives against a broad set of criteria. Existing literature lacks extensive documentation on the application of MCDA in decommissioning decisions, particularly in quantitatively evaluating the performance of different decommissioning strategies against a comprehensive set of criteria. This study introduces a novel MCDA model tailored for the decommissioning of subsea O&G assets, aiming to improve decision-making by providing a quantitative ranking of decommissioning alternatives. Employing the Preference Ranking Organization Method for Enrichment Evaluations method, the model considers 37 attributes across six criteria (safety, environment, waste management, technical, social, and economic) to evaluate several decommissioning alternatives for the Brazilian Espadarte Field. Weightings and scenarios are defined through expert consultation, enhancing the model’s adaptability and relevance to real-world contexts. The model’s application demonstrated significant efficacy, with the selected top-ranked decommissioning alternative achieving a performance indicator of 58%, corresponding to the removal of 50% of the pipeline length considered. This result underscores the model’s capacity to identify optimal compromises between competing criteria. The study contributes to the field by filling the gap in the quantitative evaluation of decommissioning alternatives, offering a robust, transparent decision-making tool that accommodates complex, multi-criteria decisions. The model provides a significant advancement in the rationalization of decommissioning strategies for O&G assets.

References

1.
Martins
,
I. D.
,
Moraes
,
F. F.
,
Távora
,
G.
,
Soares
,
H. L. F.
,
Infante
,
C. E.
,
Arruda
,
E. F.
,
Bahiense
,
L.
,
Caprace
,
J.
, and
Lourenço
,
M. I.
,
2020
, “
A Review of the Multicriteria Decision Analysis Applied to Oil and Gas Decommissioning Problems
,”
Ocean Coast. Manage.
,
184
, p.
105000
.
2.
da Cunha Jácome Vidal
,
P.
,
Aguirre González
,
M. O.
,
Cassimiro de Melo
,
D.
,
de Oliveira Ferreira
,
P.
,
Vasconcelos Sampaio
,
P. G.
, and
Lima
,
L. O.
,
2022
, “
Conceptual Framework for the Decommissioning Process of Offshore Oil and Gas Platforms
,”
Marine Struct.
,
85
, p.
103262
.
3.
da Cunha Jácome Vidal
,
P.
,
González
,
M. O. A.
,
de Vasconcelos
,
R. M.
,
de Melo
,
D. C.
,
de Oliveira Ferreira
,
P.
,
Sampaio
,
P. G. V.
, and
da Silva
,
D. R.
,
2022
, “
Decommissioning of Offshore Oil and Gas Platforms: A Systematic Literature Review of Factors Involved in the Process
,”
Ocean Eng.
,
255
, p.
111428
.
4.
Capobianco
,
N.
,
Basile
,
V.
,
Loia
,
F.
, and
Vona
,
R.
,
2021
, “
Toward a Sustainable Decommissioning of Offshore Platforms in the Oil and Gas Industry: A PESTLE Analysis
,”
Sustainability
,
13
(
11
), p.
6266
.
5.
Henrion
,
M.
,
Bernstein
,
B.
, and
Swamy
,
S.
,
2015
, “
A Multi-attribute Decision Analysis for Decommissioning Offshore Oil and Gas Platforms
,”
Integr. Environ. Assess. Manage.
,
11
(
4
), pp.
594
609
.
6.
Bond
,
T.
,
Partridge
,
J. C.
,
Taylor
,
M. D.
,
Cooper
,
T. F.
, and
McLean
,
D. L.
,
2018
, “
The Influence of Depth and a Subsea Pipeline on Fish Assemblages and Commercially Fished Species
,”
PLoS One
,
13
(
11
), p.
e0207703
.
7.
Lemasson
,
A. J.
,
Knights
,
A. M.
,
Thompson
,
M.
,
Lessin
,
G.
,
Beaumont
,
N.
,
Pascoe
,
C.
,
Queirós
,
A. M.
,
McNeill
,
L.
,
Schratzberger
,
M.
, and
Somerfield
,
P. J.
,
2021
, “
Evidence for the Effects of Decommissioning Man-Made Structures on Marine Ecosystems Globally: A Systematic Map Protocol
,”
Environ. Evid.
,
10
(
1
), p.
4
.
8.
Li
,
Y.
, and
Hu
,
Z.
,
2022
, “
A Review of Multi-attributes Decision-Making Models for Offshore Oil and Gas Facilities Decommissioning
,”
J. Ocean Eng. Sci.
,
7
(
1
), pp.
58
74
.
9.
Dias
,
C. Z.
,
Godman
,
B.
,
Gargano
,
L. P.
,
Azevedo
,
P. S.
,
Garcia
,
M. M.
,
Cazarim
,
M. d. S.
, and
Pantuzza
,
L. L. N.
,
2020
, “
Integrative Review of Managed Entry Agreements: Chances and Limitations
,”
PharmacoEconomics
,
38
(
11
), pp.
1165
1185
.
10.
Ekins
,
P.
,
Vanner
,
R.
, and
Firebrace
,
J.
,
2006
, “
Decommissioning of Offshore Oil and Gas Facilities: A Comparative Assessment of Different Scenarios
,”
J. Environ. Manage.
,
79
(
4
), pp.
420
438
.
11.
Aceves
,
M. C.
, and
Fuamba
,
M.
,
2016
, “
Methodology for Selecting Best Management Practices Integrating Multiple Stakeholders and Criteria. Part 2: Case Study
,”
Water
,
8
(
2
), p.
56
.
12.
Brans
,
J.
,
Vincke
,
P.
, and
Mareschal
,
B.
,
1986
, “
How to Select and How to Rank Projects: The Promethee Method
,”
Eur. J. Oper. Res.
,
24
(
2
), pp.
228
238
. Mathematical Programming Multiple Criteria Decision Making.
13.
Brans
,
J.-P.
, and
Mareschal
,
B.
,
2005
,
Promethee Methods
,
Springer New York
,
New York
, pp.
163
186
.
14.
Fowler
,
A.
,
Macreadie
,
P.
,
Jones
,
D.
, and
Booth
,
D.
,
2014
, “
A Multi-criteria Decision Approach to Decommissioning of Offshore Oil and Gas Infrastructure
,”
Ocean Coast. Manage.
,
87
, pp.
20
29
.
15.
Haddad
,
A.
,
Galante
,
E.
,
Caldas
,
R.
, and
Morgado
,
C.
,
2012
, “Hazard Matrix Application in Health, Safety and Environmental Management Risk Evaluation”. Risk Management for the Future, J. Emblemsvag, ed., IntechOpen, Rijeka, Chap. 2.
16.
Caprace
,
J.
, and
Rigo
,
P
,
2009
, “
Multi-criteria Decision Support for Cost Assessment Techniques in Shipbuilding Industry
,” COMPIT’09 –
The 8th International Conference on Computer Applications and Information Technology in the Maritime Industries
,
Budapest, Hungary
,
May 10–12
, Vol. 1, pp.
6
21
.
17.
Kaiser
,
M. J.
,
2015
, “
A New Approach to Decommissioning Cost Estimation Using Settled Liability Data
,”
Eng. Econ.
,
60
(
3
), pp.
197
230
.
18.
2006, “ISO 14040:2006 – Environmental Management – Life Cycle Assessment – Principles and Framework.” International Organization for Standardization, Geneva, CH.
19.
2006, ISO 14044:2006 – Environmental management – Life Cycle assessment – Requirements and guidelines. International Organization for Standardization, Geneva, CH.
20.
Huijbregts
,
M. A. J.
,
Steinmann
,
Z. J. N.
,
Elshout
,
P. M. F.
,
Stam
,
G.
,
Verones
,
F.
,
Vieira
,
M.
,
Zijp
,
M.
,
Hollander
,
A.
, and
van Zelm
,
R.
,
2017
, “
ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level
,”
Int. J. Life Cycle Assess.
,
22
(
2
), pp.
138
147
.
21.
Simos
,
J.
,
1990
, “Evaluer l’impact sur l’environnement: une approche originale par l’analyse multicritère et la négociation (Lausanne, Presses polytechniques et universitaires romandes).”
22.
Figueira
,
J.
, and
Roy
,
B.
,
2002
, “
Determining the Weights of Criteria in the ELECTRE Type Methods With a Revised Simos’ Procedure
,”
Eur. J. Oper. Res.
,
139
(
2
), pp.
317
326
.
23.
Siskos
,
E.
, and
Tsotsolas
,
N.
,
2015
, “
Elicitation of Criteria Importance Weights Through the Simos Method: A Robustness Concern
,”
Eur. J. Oper. Res.
,
246
(
2
), pp.
543
553
.
24.
Petrobras
,
2022
, “Programa de Descomissionamento Parcial do Sistema Submarino do FPSO Espadarte.” Petrobras.
You do not currently have access to this content.