Abstract
A novel numerical approach, leveraging the 3D time domain Rankine panel method, has been introduced to simulate ship motions while accounting for the effects of ship wave. This method treats ship wave as steady flow, enabling a more accurate representation of physical phenomena. The underlying numerical formulation used to solve the ship wave potential is comprehensively derived, establishing the unsteady disturbance potential's boundary value problem and incorporating the effects of steady motion. Wave forces and motion responses of various ship forms were computed and compared with experimental data and results from other numerical techniques. The findings reveal that calculations based on uniform stream exhibit significantly larger errors than those considering double body flow or ship wave. For the Wigley I and S175 models, the discrepancies between double body flow and ship wave predictions are relatively minor, with ship wave calculations demonstrating slightly higher accuracy. In contrast, for the intricate KRISO Container Ship (KCS) model, where ship wave is more pronounced, the error margin for ship wave calculations relative to experimental results remains within 21.9%, while errors for double body flow calculations can reach up to 50.2%. This highlights the superior accuracy of ship wave-based calculations for the KCS model. Overall, the proposed method effectively captures the influence of steady flow and demonstrates significant advantages in computing pronounced ship wave generated during realistic ship motion.