Abstract

The turbulent flow characteristics over bed-mounted three different cubical shape bluff bodies are examined experimentally in the water channel facility. The steady and fluctuating flow fields are investigated to analyze the effect of corner radius and shapes of the bluff body on turbulent flow structure, particularly in the wake region. It is found that the sharp corner region significantly impacts the flow separation and alters the characteristics of the shear-layer flow. In particular, the relatively suitable change in geometry resulted in a remarkable variation of the mean flow in the wake is observed. The anisotropic nature of flow is analyzed using the turbulence triangle for the different cubical structures. The variation of the turbulent length scales is presented in the near- and far-wake regions of the submerged obstacles.

References

1.
Kiya
,
M.
,
Tamura
,
H.
, and
Arie
,
M.
,
1980
, “
Vortex Shedding From a Circular Cylinder in Moderate-Reynolds-Number Shear Flow
,”
J. Fluid Mech.
,
101
(
4
), pp.
721
735
.
2.
Sadeque
,
M. A.
,
Rajaratnam
,
N.
, and
Loewen
,
M. R.
,
2008
, “
Flow Around Cylinders in Open Channels
,”
J. Eng. Mech.
,
134
(
1
), pp.
60
71
.
3.
Sadeque
,
M. A.
,
Rajaratnam
,
N.
, and
Loewen
,
M. R.
,
2009
, “
Effects of Bed Roughness on Flow Around Bed-Mounted Cylinders in Open Channels
,”
J. Eng. Mech.
,
135
(
2
), pp.
100
110
.
4.
Kumar
,
P.
, and
Singh
,
S. K.
,
2020
, “
Flow Past a Bluff Body Subjected to Lower Subcritical Reynolds Number
,”
J. Ocean Eng. Sci.
,
5
(
2
), pp.
173
179
.
5.
Batham
,
J. P.
,
1973
, “
Pressure Distributions on Circular Cylinders at Critical Reynolds Numbers
,”
J. Fluid Mech.
,
57
(
2
), pp.
209
228
.
6.
Szechenyi
,
E.
,
1975
, “
Supercritical Reynolds Number Simulation for Two-Dimensional Flow Over Circular Cylinders
,”
J. Fluid Mech.
,
70
(
3
), pp.
529
542
.
7.
Güven
,
O.
,
Farell
,
C.
, and
Patel
,
V. C.
,
1980
, “
Surface-Roughness Effects on the Mean Flow Past Circular Cylinders
,”
J. Fluid Mech.
,
98
(
4
), pp.
673
701
.
8.
Nakamura
,
Y.
, and
Tomonari
,
Y.
,
1982
, “
The Effects of Surface Roughness on the Flow Past Circular Cylinders at High Reynolds Numbers
,”
J. Fluid Mech.
,
123
, pp.
363
378
.
9.
Cao
,
S.
,
Ge
,
Y.
, and
Tamura
,
Y.
,
2012
, “
Shear Effects on Flow Past a Square Cylinder at Moderate Reynolds Numbers
,”
J. Eng. Mech.
,
138
(
1
), pp.
116
123
.
10.
Cao
,
S.
,
Zhou
,
Q.
, and
Zhou
,
Z.
,
2014
, “
Velocity Shear Flow Over Rectangular Cylinders With Different Side Ratios
,”
Comput. Fluid.
,
96
(
1
), pp.
35
46
.
11.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J.-H.
,
1995
, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
,
304
, pp.
285
319
.
12.
Van Oudheusden
,
B. W.
,
Scarano
,
F.
,
Van Hinsberg
,
N. P.
, and
Roosenboom
,
E. W. M.
,
2007
, “
Quantitative Visualization of the Flow Around a Square-Section Cylinder at Incidence
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6–7
), pp.
1
10
.
13.
Lim
,
H. C.
,
Thomas
,
T. G.
, and
Castro
,
I. P.
,
2009
, “
Flow Around a Cube in a Turbulent Boundary Layer: Les and Experiment
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
2
), pp.
96
109
.
14.
Delany
,
N. K.
, and
Sorensen
,
N. E.
,
1953
, “
Low-Speed Drag of Cylinders of Various Shapes
,”.
15.
Polhamus
,
E. C.
,
1958
, “
Effect of Flow Incidence and Reynolds Number on Low-Speed Aerodynamic Characteristics of Several Noncircular Cylinders With Applications to Directional Stability and Spinning
,” Technical Report, 4176. National Advance Commercial Aerospace 1–54 (Technical Note).
16.
Owen
,
J. C.
,
Bearman
,
P. W.
, and
Szewczyk
,
A. A.
,
2001
, “
Passive Control of VIV With Drag Reduction
,”
J. Fluid Struct.
,
15
(
3–4
), pp.
597
605
.
17.
Kirkil
,
G.
,
Constantinescu
,
G.
, and
Ettema
,
R.
,
2005
, “
The Horseshoe Vortex System Around a Circular Bridge Pier on Equilibrium Scoured Bed
,” Impacts of Global Climate Change., pp.
1
12
.
18.
Castro
,
I. P.
, and
Robins
,
A. G.
,
1977
, “
The Flow Around a Surface-Mounted Cube in Uniform and Turbulent Streams
,”
J. Fluid Mech.
,
79
(
2
), pp.
307
335
.
19.
Ogawa
,
Y.
,
Oikawa
,
S.
, and
Uehara
,
K.
,
1983
, “
Field and Wind Tunnel Study of the Flow and Diffusion Around a Model Cube—II. Nearfield and Cube Surface Flow and Concentration Patterns
,”
Atmos. Environ.
,
17
(
6
), pp.
1161
1171
.
20.
Schofield
,
W. H.
, and
Logan
,
E.
,
1990
, “
Turbulent Shear Flow Over Surface Mounted Obstacle
,”
ASME J. Fluids Eng.
,
112
(
4
), pp.
376
385
.
21.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of the Flows Around Free or Surface Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
86
(
1
), pp.
179
200
.
22.
Martinuzzi
,
R.
, and
Tropea
,
C.
,
1993
, “
The Flow Around Surface Mounted, Prismatic Obstacle Placed in a Fully Developed Channel Flow
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
85
92
.
23.
Hussein
,
H. J. A.
, and
Martinuzzi
,
R. J.
,
1996
, “
Energy Balance for Turbulent Flow Around a Surface Mounted Cube Placed in a Channel
,”
Phy. Fluids.
,
8
(
3
), pp.
764
780
.
24.
Seeta Ratnam
,
G.
, and
Vengadesan
,
S.
,
2008
, “
Performance of two Equation Turbulence Models for Prediction of Flow and Heat Transfer Over a Wall Mounted Cube
,”
Int. J. Heat Mass Trans.
,
51
(
11–12
), pp.
2834
2846
.
25.
Van Hinsberg
,
N. P.
,
2015
, “
The Reynolds Number Dependency of the Steady and Unsteady Loading on a Slightly Rough Circular Cylinder: From Subcritical up to High Transcritical Flow State
,”
J. Fluid Struct.
,
55
, pp.
526
539
.
26.
Hearst
,
R. J.
,
Gomit
,
G.
, and
Ganapathisubramani
,
B.
,
2016
, “
Effect of Turbulence on the Wake of a Wall-Mounted Cube
,”
J. Fluid Mech.
,
804
, pp.
513
530
.
27.
Singh
,
S. K.
,
Raushan
,
P. K.
, and
Debnath
,
K.
,
2019
, “
Role of Multiple Flow Stages Over Submerged Structure
,”
Ocean Eng.
,
181
, pp.
59
70
.
28.
Kozmar
,
H.
,
2010
, “
Scale Effects in Wind Tunnel Modeling of an Urban Atmospheric Boundary Layer
,”
Theor. Appl. Climatol.
,
100
(
1–2
), pp.
153
162
.
29.
Khan
,
H. H.
,
Anwer
,
S. F.
,
Hasan
,
N.
, and
Sanghi
,
S.
,
2021
, “
Laminar to Turbulent Transition in a Finite Length Square Duct Subjected to Inlet Disturbance
,”
Phy. Fluids.
,
33
(
6
), p.
065128
.
30.
Dutta
,
S.
,
Muralidhar
,
K.
, and
Panigrahi
,
P. K.
,
2003
, “
Influence of the Orientation of a Square Cylinder on the Wake Properties
,”
Exp. Fluids.
,
34
(
1
), pp.
16
23
.
31.
Van Hinsberg
,
N. P.
,
Schewe
,
G.
, and
Jacobs
,
M.
,
2018
, “
Experimental Investigation on the Combined Effects of Surface Roughness and Corner Radius for Square Cylinders at High Reynolds Numbers up to 107
,”
J. Wind Eng. Ind. Aerodyn.
,
173
, pp.
14
27
.
32.
Raushan
,
P. K.
,
Singh
,
S. K.
, and
Debnath
,
K.
,
2018
, “
Grid Generated Turbulence Under the Rigid Boundary Influence
,”
J. Wind Eng. Ind. Aerodyn.
,
182
, pp.
252
261
.
33.
Lacey
,
R. J.
, and
Rennie
,
C. D.
,
2012
, “
Laboratory Investigation of Turbulent Flow Structure Around a Bed-Mounted Cube at Multiple Flow Stages
,”
J. Hydraul Eng.
,
138
(
1
), pp.
71
84
.
34.
Pattenden
,
R. J.
,
Turnock
,
S. R.
, and
Zhang
,
X.
,
2005
, “
Measurements of the Flow Over a Low-Aspect-Ratio Cylinder Mounted on a Ground Plane
,”
Exp. Fluids
,
39
(
1
), pp.
10
21
.
35.
Bomminayuni
,
S.
, and
Stoesser
,
T.
,
2011
, “
Turbulence Statistics in an Open-Channel Flow Over a Rough Bed
,”
J. Hydraul. Eng.
,
137
(
11
), pp.
1347
1358
.
36.
Longo
,
S.
,
Clavero
,
M.
,
Chiapponi
,
L.
, and
Losada
,
M.
,
2017
, “
Invariants of Turbulence Reynolds Stress and of Dissipation Tensors in Regular Breaking Waves
,”
Water.
,
9
(
11
), p.
893
.
37.
Raushan
,
P. K.
,
Singh
,
S. K.
, and
Debnath
,
K.
,
2021
, “
Turbulence Characteristics of Oscillating Flow Through Passive Grid
,”
Ocean Eng.
,
224
, p.
108727
.
38.
Simonsen
,
A. J.
, and
Krogstad
,
P.-A.
,
2005
, “
Turbulent Stress Invariant Analysis: Clarification of Existing Terminology
,”
Phys. Fluids.
,
17
(
8
), p.
088103
.
39.
Reynolds
,
W. C.
, and
Kassinos
,
S. C.
,
1995
, “
One-Point Modelling of Rapidly Deformed Homogeneous Turbulence
,”
Proc. Roy. Soc. Lond. Math. Phys. Sci.
,
451
, pp.
87
104
.
40.
Tedds
,
S. C.
,
Owen
,
I.
, and
Poole
,
R. J.
,
2014
, “
Near-Wake Characteristics of a Model Horizontal Axis Tidal Stream Turbine
,”
Renewable Energy.
,
63
, pp.
222
235
.
41.
Krogstad
,
P.-A.
, and
Antonia
,
R. A.
,
1999
, “
Surface Roughness Effects in Turbulent Boundary Layers
,”
Exp. Fluid.
,
27
(
5
), pp.
450
460
.
42.
Monin
,
A. S.
, and
Yaglom
,
A. M.
,
2007
,
Statistical Fluid Mechanics
, Vol.
I
, Dover Publications, Mineola, NY.
43.
Hinze
,
I. O.
,
1975
,
Turbulence
,
McGraw-Hill Book Company
,
New York
.
44.
Imamura
,
J.
,
Takagi
,
K.
, and
Nagaya
,
S.
,
2019
, “
Engineering Analysis of Turbulent Flow Measurements Near Kuchinoshima Island
,”
J. Mar. Sci. Technol.
,
24
(
2
), pp.
329
337
.
45.
Katul
,
G. G.
, and
Parlange
,
M. B.
,
1995
, “
Analysis of Land Surface Heat Fluxes Using the Orthonormal Wavelet Approach
,”
Water Resour. Res.
,
31
(
11
), pp.
2743
2749
.
46.
Zhao
,
L.
,
Cui
,
W.
, and
Ge
,
Y.
,
2019
, “
Measurement, Modeling and Simulation of Wind Turbulence in Typhoon Outer Region
,”
J. Wind Eng. Ind. Aerodyn.
,
195
, p.
104021
.
47.
Pope
,
S. P.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
48.
Arya
,
S. P.
,
1999
,
Air Pollution Meteorology and Dispersion
,
Oxford University Press
,
New York
, Vol.
6
.
49.
Vita
,
G.
,
Hemida
,
H.
,
Andrianne
,
T.
, and
Baniotopoulos
,
C. C.
,
2018
, “
Generating Atmospheric Turbulence Using Passive Grids in an Expansion Test Section of a Wind Tunnel
,”
J. Wind Eng. Ind. Aerod.
,
178
, pp.
91
104
.
You do not currently have access to this content.