Abstract

The design of new offshore structures requires the calculation of the wave-induced loads. In this regard, the computational fluid dynamics (CFD) methodology has shown to be a reliable tool, in the case of breaking waves especially. In this paper, two CFD models are tested in the reproduction of the experimental spilling waves impacting a circular cylinder for four different wave impact scenarios for focused waves. The numerical and experimental free surface elevations at different locations around the cylinder are also compared to verify the both numerical models. The numerical results from the models are shown together with the experimental measurements. Both CFD models are able to model the impact forces with a reasonable accuracy. When the cylinder is placed at a distance of 0.7 m from the wave breaking point, the value of the measured wave impact forces is highest due to the overturning wave crest and air entrainment. The wave-induced impact forces decrease, when the monopile is placed at distances further away from the breaking location.

References

1.
Kjeldsen
,
S. P.
,
Tørum
,
A.
, and
Dean
,
R. G.
,
1986
, “
Wave Forces on Vertical Piles Caused by 2 and 3 Dimensional Breaking Waves
,”
Proceedings of the 20th International Conference on Coastal Engineering
,
Taipei, Taiwan
,
Nov. 9–14
, pp.
1929
1942
.
2.
Morison
,
J.
,
O’Brien
,
M.
,
Johnson
,
J.
, and
Schaaf
,
S.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Petrol. Technol. AIME
,
2
(
5
), pp.
149
154
. 10.2118/950149-G
3.
Wienke
,
J.
, and
Oumeraci
,
H.
,
2005
, “
Breaking Wave Impact Force on a Vertical and Inclined Slender Pile—Theoretical and Large-Scale Model Investigations
,”
Coastal Eng.
,
52
(
5
), pp.
435
462
. 10.1016/j.coastaleng.2004.12.008
4.
Hansen
,
H. F.
, and
Kofoed-Hansen
,
H.
,
2017
, “
An Engineering-Model for Extreme Wave-Induced Loads on Monopile Foundations
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, p.
V03BT02A014
.
5.
Nielsen
,
A. W.
,
Mortensen
,
S. B.
,
Jacoboson
,
V.
, and
Christensen
,
E. D.
,
2008
, “
Numerical Modelling of Wave Run-Up on a Wind Turbine Foundation
,”
ASME 27th International Conference on Offshore and Artic Engineering
,
Estoril, Portugal
,
June 15–20
, pp.
597
603
.
6.
Christensen
,
E. D.
,
Bredmose
,
H.
, and
Hansen
,
E. A.
,
2009
, “
Transfer of Boussinesq Waves to a Navier-Stokes Solver: Application to Wave Loads on an Offshore Wind Turbine Foundation
,”
ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
,
Honolulu, HI
,
May 31–June 5
, pp.
917
926
.
7.
Bredmose
,
H.
, and
Jacobsen
,
N. G.
,
2010
, “
Breaking Wave Impacts on Offshore Wind Turbine Foundations: Focused Wave Groups and CFD
,”
ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
,
Shanghai, China
,
June 6–11
, pp.
397
404
.
8.
Paulsen
,
B. T.
,
Bredmose
,
H.
, and
Bingham
,
H. B.
,
2014
, “
An Efficient Domain Decomposition Strategy for Wave Loads on Surface Piercing Circular Cylinders
,”
Coastal Eng.
,
86
, pp.
57
76
. 10.1016/j.coastaleng.2014.01.006
9.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
A. Ø.
,
2016
, “
Breaking Wave Interaction With a Vertical Cylinder and the Effect of Breaker Location
,”
Ocean Eng.
,
128
, pp.
105
115
. 10.1016/j.oceaneng.2016.10.025
10.
Tomaselli
,
P. D.
, and
Christensen
,
E. D.
,
2016
, “
A Coupled VOF-Eulerian Multiphase CFD Model to Simulate Breaking Wave Impacts on Offshore Structures
,”
ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June 19–24
, p.
V002T08A026
.
11.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
A. O.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
. 10.1016/j.compfluid.2016.09.012
12.
Deane
,
G. B.
, and
Stokes
,
M. D.
,
2002
, “
Scale Dependence of Bubble Creation Mechanisms in Breaking Waves
,”
Nature
,
418
(
6900
), pp.
839
844
. 10.1038/nature00967
13.
Tomaselli
,
P. D.
, and
Christensen
,
E. D.
,
2015
, “
Investigation on the Use of a Multiphase Eulerian CFD Solver to Simulate Breaking Waves
,”
ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
,
St. John’s, Newfoundland, Canada
,
May 31–June 5
, p.
V002T08A007
.
14.
Issa
,
R. I.
,
1985
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
. 10.1016/0021-9991(86)90099-9
15.
Tomaselli
,
P. D.
, and
Christensen
,
E. D.
,
2017
, “
A CFD Investigation on the Effect of the Air Entrainment in Breaking Wave Impacts on Mono-Pile
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, p.
V07AT06A072
.
16.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
, pp.
12
49
. 10.1016/0021-9991(88)90002-2
17.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous Flow Problems With Irregular Boundaries
,”
J. Comput. Phys.
,
227
, pp.
4354
4397
. 10.1016/j.jcp.2007.12.022
18.
Aggarwal
,
A.
,
Bihs
,
H.
,
Alagan Chella
,
M.
, and
Myrhaug
,
D.
,
2019
, “
Characteristics of Breaking Irregular Wave Forces on a Monopile
,”
Appl. Ocean Res.
,
90
, p.
101846
. 10.1016/j.apor.2019.06.003
19.
Aggarwal
,
A.
,
Bihs
,
H.
,
Alagan Chella
,
M.
, and
Myrhaug
,
D.
,
2019
, “
Estimation of Breaking Wave Properties and Their Interaction With a Jacket Structure
,”
J. Fluids Struct.
,
91
, p.
102722
. 10.1016/j.jfluidstructs.2019.102722
20.
Bihs
,
H.
, and
Kamath
,
A.
,
2017
, “
A Combined Level Set/Ghost Cell Immersed Boundary Representation for Simulations of Floating Bodies
,”
Int. J. Numer. Methods Fluids
,
83
(
12
), pp.
905
916
. 10.1002/fld.4333
21.
Aggarwal
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
,
Pákozdi
,
C.
,
Petter
,
A.
, and
Arntsen
,
O.
,
2018
, “
CFD Based Study of Steep Irregular Waves for Extreme Wave Spectra
,”
Int. J. Offshore Polar Eng.
,
28
(
2
), pp.
164
170
. 10.17736/ijope.2018.ak26
22.
Afzal
,
M.
,
Bihs
,
H.
,
Kamath
,
A.
, and
Arntsen
,
A. O.
,
2015
, “
Three Dimensional Numerical Modeling of Pier Scour Under Current and Waves Using Level Set Method
,”
ASME J. Offshore Mech. Arctic Eng.
,
137
(
3
), p.
032001
. 10.1115/1.4029999
23.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
. 10.1002/fld.2726
24.
Márquez Damián
,
S.
,
2013
, “
An Extended Mixture Model for the Simultaneous Treatment of Short and Long Scale Interfaces
,” Ph.D. thesis,
Universidad Nacional del Litoral
,
Argentina
.
25.
Shu
,
C. W.
,
1997
, “
Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
,”
NASA/CR-97-206253
, ICASE Report No. 97-65.
26.
Jiang
,
G. S.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton-Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
(
6
), pp.
2126
2143
. 10.1137/S106482759732455X
27.
Shu
,
C.
, and
Gottlieb
,
S.
,
1998
, “
Total Variation Diminishing Range Kutta Schemes
,”
Math. Comput.
,
67
(
221
), pp.
73
85
. 10.1090/S0025-5718-98-00913-2
28.
Griebel
,
M.
,
Dornseifer
,
T.
, and
Neunhoeffer
,
T.
,
1998
,
Numerical Simulations in Fluid Dynamics: A Practical Introduction
,
SIAM
,
New York
.
29.
Wilcox
,
D.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries Inc.
,
La Canada, CA
.
30.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
. 10.1063/1.857955
31.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
. 10.1063/1.858280
32.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2006
,
Hydrodynamics Around Cylindrical Structures
, Vol.
26
,
World Scientific
,
Singapore
.
33.
Roenby
,
J.
,
Bredmose
,
H.
, and
Jasak
,
H.
,
2016
, “
A Computational Method for Sharp Interface Advection
,”
Open Sci.
,
3
(
11
), p.
160405
. 10.1098/rsos.160405
34.
Larsen
,
B. E.
,
Fuhrman
,
D. R.
, and
Roenby
,
J.
,
2019
, “
Performance of Interfoam on the Simulation of Progressive Waves
,”
Coast. Eng. J.
,
61
(
3
), pp.
380
400
. https://doi.org/10.1080/21664250.2019.1609713
You do not currently have access to this content.