Abstract
Alloy 800H is a candidate material for supercritical water-cooled reactors (SCWR), specifically for in-core components in Canadian-type SCWR, that will operate at a pressure of 25 MPa and a core temperature from 350 °C to 625 °C. To evaluate this, several exposures to supercritical water took place at 395 °C and 25 MPa in a supercritical water loop (SCWL). The duration of each exposure was 500, 150, and 1000 h. Scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD), in combination with Raman spectroscopy (RS) and X-ray diffraction (XRD), was used to evaluate the microstructure of alloy 800H after the exposures to supercritical water. All these methods confirmed the presence of magnetite and trevorite/chromite crystals, with a thickness of less than 1 μm, on the surface after each exposure. No significant change occurred after the second and third exposures. The matrix crystallography did not change during the exposures and demonstrated grain twinning with a grain size of 100–400 μm.