Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The purpose of this research work is to establish the functionality of the novel ultrasonic non-destructive inspection system and accurate gauging of pipes and to locate and visualize flaws in the form of B-scan cross-sectional view (front-view) of the pipe under test. This paper presents a custom-made perspex inspection head assembly integrated with a stand-alone, Li-ion battery-powered and IP67-grade water-immersible ultrasonic instrumentation and gauging system, which enables an efficient assessment of the condition and health of pipes in stringent environments. Extensive inspection was carried out on six samples of 12 in. inner diameter (ID) type carbon steel (CS) pipes with length of 500 mm and having machined wall thickness to simulate loss of wall thicknesses from 10% over a length 150 mm of pipe, using 5 MHz spherically focused transducers. Further inspection were carried out on a 12 in. CS pipe with four notches and four flat bottom holes (FBHs) machined on the outer diameter (OD) side. Identical flaws were also machined onto 12 in. CS pipe of total length 700 mm containing water inside the pipe in flowing condition with water flowrate of 100 liters per minute (LPM). The test results demonstrate the effectiveness of the developed IP67-grade water-immersible ultrasonic pipe inspection and gauging instrumentation system for assessing the condition and health of long-length carbon steel pipes operating in harsh environments.

References

1.
Alobaidi
,
W. M.
,
Alkuam
,
E. A.
,
Al-Rizzo
,
H. M.
, and
Sandgren
,
E.
,
2015
, “
Applications of Ultrasonic Techniques in Oil and Gas Pipeline Industries: A Review
,”
Am. J. Oper. Res.
,
5
(
4
), pp.
274
287
.
2.
Vanaei
,
H.
,
Eslami
,
A.
, and
Egbewande
,
A.
,
2017
, “
A Review on Pipeline Corrosion, In-Line Inspection (ILI), and Corrosion Growth Rate Models
,”
Int. J. Pressure Ves. Piping
,
149
, pp.
43
54
.
3.
Shi
,
Y.
,
Zhang
,
C.
,
Li
,
R.
,
Cai
,
M.
, and
Jia
,
G.
,
2015
, “
Theory and Application of Magnetic Flux Leakage Pipeline Detection
,”
Sensors
,
15
(
12
), pp.
31036
31055
.
4.
Ho
,
M.
,
El-Borgi
,
S.
,
Patil
,
D.
, and
Song
,
G.
,
2020
, “
Inspection and Monitoring Systems Subsea Pipelines: A Review Paper
,”
Struct. Health Monit.
,
19
(
2
), pp.
606
645
.
5.
Okolo
,
C. K.
, and
Meydan
,
T.
,
2017
, “
Axial Magnetic Field Sensing for Pulsed Magnetic Flux Leakage Hairline Crack Detection and Quantification
,”
2017 IEEE SENSORS
,
Glasgow, UK
,
Dec. 25
, pp.
1
3
.
6.
Yang
,
L.
,
Huang
,
P.
,
Bai
,
S.
,
Gao
,
S.
, and
Sasayama
,
T.
,
2020
, “
An Effective Method for Differentiating Inside and Outside Defects of Oil and Gas Pipelines Based on Additional Eddy Current in Low-Frequency Electromagnetic Detection Technique
,”
Jpn. J. Appl. Phys.
,
59
(
9
), p.
096505
.
7.
Piao
,
G.
,
Guo
,
J.
,
Hu
,
T.
,
Deng
,
Y.
, and
Leung
,
H.
,
2019
, “
A Novel Pulsed Eddy Current Method for High-Speed Pipeline Inline Inspection
,”
Sens. Actuators A
,
295
(
15
), pp.
244
258
.
8.
Lei
,
H.
,
Huang
,
Z.
,
Liang
,
W.
,
Mao
,
Y.
, and
Que
,
P. W.
,
2009
, “
Ultrasonic PIG for Submarine Oil Pipeline Corrosion Inspection
,”
Russ. J. Nondestruct. Test.
,
45
(
4
), pp.
285
291
.
9.
Holstein
,
P.
, and
Munch
,
H. J.
,
2010
, “
Ultrasonic PIG Detection at Pipelines
,”
PPSA Seminar 2010
,
Aberdeen, Scotland
,
Nov. 17
.
10.
Carvalho
,
A.
,
Rebello
,
J.
,
Souza
,
M.
,
Sagrilo
,
L.
, and
Soares
,
S.
,
2008
, “
Reliability of Non-destructive Test Techniques in the Inspection of Pipelines Used in the Oil Industry
,”
Int. J. Pressure Ves. Piping
,
85
(
11
), pp.
745
751
.
11.
Yanming
,
G.
,
Qingshan
,
Y.
,
Zhigang
,
S.
,
Kevin
,
L.
, and
Clive
,
L.
,
2012
, “
Development of Ultrasonic Phased Array Systems for Applications in Tube and Pipe Inspection
,”
AIP Conf. Proc.
,
1430
(
1
), pp.
1897
1904
.
12.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(
5
), p.
053001
.
13.
Banerjee
,
S.
, and
Kundu
,
T.
,
2007
, “
Ultrasonic Field Modeling in Plates Immersed in Fluid
,”
Int. J. Solids Struct.
,
44
(
18
), pp.
6013
6029
.
14.
Declercq
,
N. F.
,
Degrieck
,
J.
, and
Leroy
,
O.
,
2006
, “
Ultrasonic Polar Scans: Numerical Simulation on Generally Anisotropic Media
,”
Ultrasonics
,
45
(
1
), pp.
32
39
.
15.
Feng
,
Q.
,
Li
,
R.
,
Nie
,
B.
,
Liu
,
S.
,
Zhao
,
L.
, and
Zhang
,
H.
,
2017
, “
Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection
,”
Sensors
,
17
(
1
), pp.
1
24
.
16.
Kumar
,
N. P.
,
Patankar
,
V. H.
, and
Kulkarni
,
M. S.
,
2020
, “Ultrasonic Gauging and Imaging of Metallic Tubes and Pipes: A Review,” BARC–2020/E/012, International Atomic Energy Agency (IAEA), Vienna, https://inis.iaea.org/search/search.aspx?orig_q=RN:52019727
17.
Mazraeh
,
A. A.
,
Ismail
,
F. B.
,
Khaksar
,
W.
, and
Sahari
,
K.
,
2017
, “
Development of Ultrasonic Crack Detection System on Multi-diameter PIG Robots
,”
Procedia Comput. Sci.
,
105
, pp.
282
288
(2016 IEEE International Symposium on Robotics and Intelligent Sensors, IRIS 2016, 17–20 December 2016, Tokyo, Japan).
18.
Ramirez-Martinez
,
A.
,
Rodríguez-Olivares
,
N. A.
,
Torres-Torres
,
S.
,
Ronquillo-Lomelí
,
G.
, and
Soto-Cajiga
,
J. A.
,
2019
, “
Design and Validation of an Articulated Sensor Carrier to Improve the Automatic Pipeline Inspection
,”
Sensors
,
19
(
6
), pp.
1
22
.
19.
Birchall
,
M.
,
2007
, “
Internal Ultrasonic Pipe & Tube Inspection—IRIS
,”
IV Q13 Conferencia Panamericana de END
,
Buenos Aires, Argentina
,
October
, p. 13..
20.
You
,
Z.
,
Venczel
,
J.
, and
Dudley
,
B.
,
2009
, “
Advanced NDE for Pipes and Tubes as Per API Specifications
,”
National Seminar & Exhibition on Non-Destructive Evaluation – NDE 2009
,
Tiruchirappalli, India
,
Dec. 10–12
.
21.
Ang
,
W.
,
Juan-hua
,
Z.
,
Fu-yun
,
H.
,
Jian-dong
,
H.
, and
Ling
,
W.
,
2009
, “
Measuring System for the Wall Thickness of Pipe Based on Ultrasonic Multisensor
,”
2009 9th International Conference on Electronic Measurement Instruments
,
Beijing, China
,
Aug. 16–19
, pp. 1-641–1-644.
22.
Uzelac
,
N. I.
,
Reber
,
K.
,
Beller
,
M.
, and
Barbian
,
O. A.
,
2003
, “
Ultrasonic In-Line Inspection of Pipelines, New Generation of Tools
,”
Rio Pipeline Conference and Exposition
,
Rio de Janeiro
,
Brazil, Oct. 22–23
.
23.
Reber
,
K.
,
Beller
,
M.
,
Willems
,
H.
, and
Barbian
,
O.
,
2002
, “
A New Generation of Ultrasonic In-Line Inspection Tools for Detecting, Sizing and Locating Metal Loss and Cracks in Transmission Pipelines
,”
Proceedings of the 2002 IEEE Ultrasonics Symposium
,
Munich, Germany
,
Oct. 8–11
, Vol. 1, pp.
665
671
.
24.
Latif
,
J.
,
Shakir
,
M. Z.
,
Edwards
,
N.
,
Jaszczykowski
,
M.
,
Ramzan
,
N.
, and
Edwards
,
V.
,
2022
, “
Review on Condition Monitoring Techniques for Water Pipelines
,”
Measurement
,
193
, p.
110895
.
25.
Liu
,
Z.
, and
Kleiner
,
Y.
,
2013
, “
State of the Art Review of Inspection Technologies for Condition Assessment of Water Pipes
,”
Measurement
,
46
(
1
), pp.
1
15
.
26.
Mirchev
,
Y. N.
,
Chukachev
,
P. H.
,
Mihovski
,
M. M.
, and
Yanev
,
P. A.
,
2018
, “
Automatic Systems for Ultrasonic Inspection of Pipelines (Survey)
,”
Int. J. “NDT Days”
,
1
(
1
), pp.
27
37
. https://www.ndt.net/?id=23925
27.
Kumar
,
N. P.
, and
Patankar
,
V. H.
,
2023
, “
Battery-Powered FPGA-Based Embedded System for Ultrasonic Pipe Inspection and Gauging Systems
,”
Rev. Sci. Instrum.
,
94
(
3
), p.
034712
.
28.
Kumar
,
N. P.
, and
Patankar
,
V. H.
,
2024
, “
Zynq Soc FPGA-Based Water-Immersible Ultrasonic Instrumentation for Pipe Inspection and Gauging
,”
Eng. Res. Exp.
,
6
(
1
), p.
015313
.
29.
Kumar
,
N. P.
, and
Patankar
,
V. H.
,
2024
, “
Advancement in Understanding Ultrasonic Wave Propagation in Metallic Pipes by Simulation and Experimental Validation
,”
Nondestruct. Test. Eval.
, pp.
1
26
.
30.
Dong
,
M.
,
Tian
,
H
,
Ma
,
H
,
Wan
,
X
,
Chen
,
Y
,
Cao
,
X
, and
Wang
,
X
,
2023
, “
Ultrasonic Water Immersion Nondestructive Testing for Nylon Bars Based on a Multi-Gaussian Beam Model
,”
J. Nondestruct. Eval.
,
42
(
53
).
31.
Kumar
,
N. P.
,
Tarpara
,
E. G.
, and
Patankar
,
V. H.
,
2021
, “
Experimentation for Sag and Dimension Measurement of Thin-Walled Tubes and Pipes Using Multi-channel Ultrasonic Imaging System
,”
J. Nondestruct. Eval.
,
40
(
2
), pp.
1
13
.
32.
Kumar
,
N. P.
, and
Patankar
,
V. H.
,
2022
, “
Design and Development of Water-Immersible Two-Channel High-Voltage Spike Pulser for Under-Water Inspection and Gauging of Pipes
,”
Rev. Sci. Instrum.
,
93
(
1
), p.
014703
.
You do not currently have access to this content.