Abstract

Three pretensioned adjacent concrete box beam bridges were studied with a structural health monitoring (SHM) paradigm based on strain measurements and finite element static analyses. An accurate model for one bridge and an approximate model for the other two were created using ansys software. The analyses were used to calculate the strains generated by six concentrated loads that mimic the presence of a truck. Pristine and damage scenarios were implemented, and the associated numerical strains were compared to the experimental strains measured with proprietary wireless sensors during a truck test. As the results from the approximate models deviated significantly from the field response of the bridge, the accurate model applied to one bridge was extended to the other two. The comparison between numerical and experimental results revealed the presence of noncritical anomalies related to strain distribution across adjacent beams. Such issues were confirmed with the examination of the historical strains streamed for several months to a repository, using simple data processing strategies. The intellectual contribution of the work resides in the combination of finite element analysis and SHM applied to three existing bridges with very similar structural characteristics. This combination revealed the presence of noncritical issues impossible to be diagnosed with conventional inspection.

References

1.
Federal Highway Administration
,
2022
, https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm, Accessed April 26, 2023.
2.
Federal Highway Administration
,
2022
, https://www.fhwa.dot.gov/bridge/fc.cfm, Accessed April 26, 2023.
3.
Gibson
,
B.
,
Van Dyke
,
C.
,
Palle
,
S.
,
Griffith
,
R.
, and
Kreis
,
D.
,
2022
, “
Bridge Project Prioritization
,” Report No. KTC-22-08/SPR21-599-1F.
4.
Carnahan
,
H.
,
2022
, “
Pittsburgh Bridge Collapse Emphasizes Need for Bridge Repairs
,”
J. Prot. Coat. Linings
,
39
(
7
), pp.
6
7
.
5.
Epple
,
N.
,
Barroso
,
D. F.
,
Niederleithinger
,
E.
,
Hindersmann
,
I.
,
Sodeikat
,
C.
, and
Groschup
,
R.
,
2022
,
European Workshop on Structural Health Monitoring: EWSHM 2022-Volume 2
,
Springer International Publishing
,
Cham, Switzerland
, pp.
824
832
.
6.
Eddy
,
I.
,
Underhill
,
P. R.
,
Morelli
,
J.
, and
Krause
,
T. W.
,
2020
, “
Pulsed Eddy Current Response to General Corrosion in Concrete Rebar
,”
ASME J. Nondestr. Eval.
,
3
(
4
), p.
044501
.
7.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
303
315
.
8.
Cawley
,
P.
,
2021
, “
A Development Strategy for Structural Health Monitoring Applications
,”
ASME J. Nondestr. Eval.
,
4
(
4
), p.
041012
.
9.
Rizzo
,
P.
, and
Enshaeian
,
A.
,
2021
, “
Bridge Health Monitoring in the United States: A Review
,”
Soc. Behav. Pers.
,
8
(
1
), pp.
1
50
.
10.
Shenton
,
H. W.
,
Al-Khateeb
,
H. T.
,
Chajes
,
M. J.
, and
Wenczel
,
G.
,
2017
, “
Indian River Inlet Bridge (Part A): Description of the Bridge and the Structural Health Monitoring System
,”
J. Bridge Struct.
,
13
(
1
), pp.
3
13
.
11.
Shahsavari
,
V.
,
Mehrkash
,
M.
, and
Santini-Bell
,
E.
,
2020
, “
Damage Detection and Decreased Load-Carrying Capacity Assessment of a Vertical-Lift Steel Truss Bridge
,”
J. Perform. Constr. Facil.
,
34
(
2
), p.
04019123
.
12.
Tonelli
,
D.
,
Luchetta
,
M.
,
Rossi
,
F.
,
Migliorino
,
P.
, and
Zonta
,
D.
,
2020
, “
Structural Health Monitoring Based on Acoustic Emissions: Validation on a Prestressed Concrete Bridge Tested to Failure
,”
Sensors
,
20
(
24
), p.
7272
.
13.
Betti
,
R.
,
Sloane
,
M. J. D.
,
Khazem
,
D.
, and
Gatti
,
C.
,
2016
, “
Monitoring the Structural Health of Main Cables of Suspension Bridges
,”
J. Civ. Struct. Health Monit.
,
6
(
3
), pp.
355
363
.
14.
Azimi
,
M.
, and
Pekcan
,
G.
,
2020
, “
Structural Health Monitoring Using Extremely Compressed Data Through Deep Learning
,”
Comput. Civ. Infrastruct. Eng.
,
35
(
6
), pp.
597
614
.
15.
Liu
,
Y. Y.
,
Ju
,
Y. F.
,
Duan
,
C. D.
, and
Zhao
,
X. F.
,
2011
, “
Structure Damage Diagnosis Using Neural Network and Feature Fusion
,”
Eng. Appl. Artif. Intell.
,
24
(
1
), pp.
87
92
.
16.
Shang
,
Z.
,
Sun
,
L.
,
Xia
,
Y.
, and
Zhang
,
W.
,
2021
, “
Vibration-Based Damage Detection for Bridges by Deep Convolutional Denoising Autoencoder
,”
Struct. Heal. Monit.
,
20
(
4
), pp.
1880
1903
.
17.
Bao
,
Y.
,
Tang
,
Z.
,
Li
,
H.
, and
Zhang
,
Y.
,
2019
, “
Computer Vision and Deep Learning–Based Data Anomaly Detection Method for Structural Health Monitoring
,”
Struct. Health Monit.
,
18
(
2
), pp.
401
421
.
18.
Xu
,
Y.
,
Li
,
S.
,
Zhang
,
D.
,
Jin
,
Y.
,
Zhang
,
F.
,
Li
,
N.
, and
Li
,
H.
,
2018
, “
Identification Framework for Cracks on a Steel Structure Surface by a Restricted Boltzmann Machines Algorithm Based on Consumer-Grade Camera Images
,”
Struct. Control Health Monit.
,
25
(
2
), p.
e2075
.
19.
Abdeljaber
,
O.
,
Avci
,
O.
,
Kiranyaz
,
S.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2017
, “
Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
,”
J. Sound Vib.
,
388
, pp.
154
170
.
20.
Ghahremani
,
B.
,
Bitaraf
,
M.
,
Ghorbani-Tanha
,
A. K.
, and
Fallahi
,
R.
,
2021
, “
Structural Damage Identification Based on Fast S-Transform and Convolutional Neural Networks
,”
Structures
,
29
, pp.
1199
1209
.
21.
Alamdari
,
M. M.
,
Rakotoarivelo
,
T.
, and
Khoa
,
N. L. D.
,
2017
, “
A Spectral-Based Clustering for Structural Health Monitoring of the Sydney Harbour Bridge
,”
Mech. Syst. Signal Process.
,
87
(
Part A
), pp.
384
400
.
22.
Worden
,
K.
, and
Manson
,
G.
,
2007
, “
The Application of Machine Learning to Structural Health Monitoring
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
515
537
.
23.
Hou
,
R.
,
Jeong
,
S.
,
Lynch
,
J. P.
,
Ettouney
,
M. M.
, and
Law
,
K. H.
,
2022
, “
Data-Driven Analytical Load Rating Method of Bridges Using Integrated Bridge Structural Response and Weigh-in-Motion Truck Data
,”
Mech. Syst. Signal Process.
,
163
, p.
108128
.
24.
Azimi
,
M.
,
Dadras Eslamlou
,
A.
, and
Pekcan
,
G.
,
2020
, “
Data-Driven Structural Health Monitoring and Damage Detection Through Deep Learning: State-of-the-Art Review
,”
Sensors
,
20
(
10
), p.
2778
.
25.
Kromanis
,
R.
, and
Kripakaran
,
P.
,
2014
, “
Predicting Thermal Response of Bridges Using Regression Models Derived From Measurement Histories
,”
Comput. Struct.
,
136
, pp.
64
77
.
26.
Zhu
,
Y.
,
Ni
,
Y. Q.
,
Jesus
,
A.
,
Liu
,
J.
, and
Laory
,
I.
,
2018
, “
Thermal Strain Extraction Methodologies for Bridge Structural Condition Assessment
,”
Smart Mater. Struct.
,
27
(
10
), p.
105051
.
27.
Gu
,
J.
,
Gul
,
M.
, and
Wu
,
X.
,
1998
, “
Damage Detection Under Varying Temperature Using Artificial Neural Networks
,”
Struct. Control Health Monit.
,
24
(
11
), p.
e1998
.
28.
Ni
,
Y. Q.
,
Hua
,
X. G.
,
Fan
,
K. Q.
, and
Ko
,
J. M.
,
2005
, “
Correlating Modal Properties With Temperature Using Long-Term Monitoring Data and Support Vector Machine Technique
,”
Eng. Struct.
,
27
(
12
), pp.
1762
1773
.
29.
Jin
,
C.
,
Li
,
J.
,
Jang
,
S.
,
Sun
,
X.
, and
Christenson
,
R.
,
2015
, “
Structural Damage Detection for In-Service Highway Bridge Under Operational and Environmental Variability
,”
Proceedings Volume 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
,
San Diego, CA
,
Mar. 8–12
.
30.
Kostić
,
B.
, and
Gül
,
M.
,
2017
, “
Vibration-Based Damage Detection of Bridges Under Varying Temperature Effects Using Time-Series Analysis and Artificial Neural Networks
,”
J. Bridg. Eng.
,
22
(
10
), p.
04017065
.
31.
Yu
,
S.
, and
Ou
,
J.
,
2017
, “
Structural Health Monitoring and Model Updating of Aizhai Suspension Bridge
,”
J. Aerosp. Eng.
,
30
(
2
), p.
B4016009
.
32.
He
,
X. H.
,
Yu
,
Z. W.
, and
Chen
,
Z. Q.
,
2008
, “
Finite Element Model Updating of Existing Steel Bridge Based on Structural Health Monitoring
,”
J. Cent. South Univ. Technol.
,
15
(
3
), pp.
399
403
.
33.
Zong
,
Z.
,
Lin
,
X.
, and
Niu
,
J.
,
2015
, “
Finite Element Model Validation of Bridge Based on Structural Health Monitoring—Part I: Response Surface-Based Finite Element Model Updating
,”
J. Traffic Transp. Eng.
,
2
(
4
), pp.
258
278
.
34.
Duan
,
Y. F.
,
Xu
,
Y. L.
,
Fei
,
Q. G.
,
Wong
,
K. Y.
,
Chan
,
K. W. Y.
,
Ni
,
Y. Q.
, and
Ng
,
C. L.
,
2011
, “
Advanced Finite Element Model of Tsing Ma Bridge for Structural Health Monitoring
,”
Int. J. Struct. Stab. Dyn.
,
11
(
2
), pp.
313
344
.
35.
Rojas-Mercedes
,
N.
,
Erazo
,
K.
, and
Di Sarno
,
L.
,
2022
, “
Seismic Fragility Curves for a Concrete Bridge Using Structural Health Monitoring and Digital Twins
,”
Earthq. Struct.
,
22
(
5
), pp.
503
515
.
36.
Kaloop
,
M. R.
,
Hwang
,
W. S.
,
Elbeltagi
,
E.
,
Beshr
,
A.
, and
Hu
,
J. W.
,
2019
, “
Evaluation of Dorim-Goh Bridge Using Ambient Trucks Through Short-Period Structural Health Monitoring System
,”
Struct. Eng. Mech.
,
69
(
3
), pp.
347
359
.
37.
Hedegaard
,
B. D.
,
French
,
C. E.
,
Shield
,
C. K.
,
Stolarski
,
H. K.
, and
Jilk
,
B. J.
,
2013
, “
Instrumentation and Modeling of I-35W St. Anthony Falls Bridge
,”
J. Bridge Eng.
,
18
(
6
), pp.
476
485
.
38.
Schlune
,
H.
,
Plos
,
M.
, and
Gylltoft
,
K.
,
2009
, “
Improved Bridge Evaluation Through Finite Element Model Updating Using Static and Dynamic Measurements
,”
Eng. Struct.
,
31
(
7
), pp.
1477
1485
.
39.
Ghahremani
,
B.
,
Bitaraf
,
M.
, and
Rahami
,
H.
,
2020
, “
A Fast-Convergent Approach for Damage Assessment Using CMA-ES Optimization Algorithm and Modal Parameters
,”
J. Civ. Struct. Health Monit.
,
10
(
3
), pp.
497
511
.
40.
Yang
,
H.
,
Xu
,
X.
, and
Neumann
,
I.
,
2016
, “
Laser Scanning-Based Updating of a Finite-Element Model for Structural Health Monitoring
,”
IEEE Sens. J.
,
16
(
7
), pp.
2100
2104
.
41.
Zanjani Zadeh
,
V.
, and
Patnaik
,
A.
,
2014
, “
Finite Element Modeling of the Dynamic Response of a Composite Reinforced Concrete Bridge for Structural Health Monitoring
,”
Int. J. Adv. Struct. Eng.
,
6
(
2
), pp.
1
14
.
42.
Cheng
,
X. X.
,
Dong
,
J.
,
Han
,
X. L.
, and
Fei
,
Q. G.
,
2018
, “
Structural Health Monitoring-Oriented Finite-Element Model for a Large Transmission Tower
,”
Int. J. Civ. Eng.
,
16
(
1
), pp.
79
92
.
43.
Giagopoulos
,
D.
,
Arailopoulos
,
A.
,
Dertimanis
,
V.
,
Papadimitriou
,
C.
,
Chatzi
,
E.
, and
Grompanopoulos
,
K.
,
2019
, “
Structural Health Monitoring and Fatigue Damage Estimation Using Vibration Measurements and Finite Element Model Updating
,”
Struct. Health Monit.
,
18
(
4
), pp.
1189
1206
.
44.
Schommer
,
S.
,
Nguyen
,
V. H.
,
Maas
,
S.
, and
Zürbes
,
A.
,
2017
, “
Model Updating for Structural Health Monitoring Using Static and Dynamic Measurements
,”
Procedia Eng.
,
199
, pp.
2146
2153
.
45.
Gatti
,
M.
,
2019
, “
Structural Health Monitoring of an Operational Bridge: A Case Study
,”
Eng. Struct.
,
195
, pp.
200
209
.
46.
Eiras
,
J. N.
,
Payan
,
C.
,
Rakotonarivo
,
S.
, and
Garnier
,
V.
,
2018
, “
Experimental Modal Analysis and Finite Element Model Updating for Structural Health Monitoring of Reinforced Concrete Radioactive Waste Packages
,”
Constr. Build. Mater.
,
180
, pp.
531
543
.
47.
Haidarpour
,
A.
, and
Fah Tee
,
K.
,
2020
, “
Finite Element Model Updating for Structural Health Monitoring
,”
SDHM Struct. Durab. Health Monit.
,
14
(
1
), pp.
1
17
.
48.
Rizzo
,
P.
, and
Lanza di Scalea
,
F.
,
2007
, “Chapter 8: Wavelet-Based Unsupervised and Supervised Learning Algorithms for Ultrasonic Structural Monitoring of Waveguides,”
Progress in Smart Materials and Structures Research
,
P. L.
Reece
, ed.,
NOVA Publishers
, pp.
227
290
.
49.
Bagheri
,
A.
,
Pistone
,
E.
, and
Rizzo
,
P.
,
2015
, “
Outlier Analysis and Artificial Neural Network for the Noncontact Nondestructive Evaluation of Immersed Plates
,”
Res. Nondestruct. Eval.
,
26
(
3
), pp.
154
173
.
50.
Zheng
,
B.
,
Rizzo
,
P.
, and
Nasrollahi
,
A.
,
2020
, “
Outlier Analysis of Nonlinear Solitary Waves for Health Monitoring Applications
,”
Struct. Health Monit.
,
19
(
4
), pp.
1160
1174
.
51.
Worden
,
K.
,
Manson
,
G.
, and
Fieller
,
N. R.
,
2000
, “
Damage Detection Using Outlier Analysis
,”
J. Sound Vib.
,
229
(
3
), pp.
647
667
.
52.
Worden
,
K.
,
Manson
,
G.
, and
Allman
,
D.
,
2003
, “
Experimental Validation of a Structural Health Monitoring Methodology: Part I. Novelty Detection on a Laboratory Structure
,”
J. Sound Vib.
,
259
(
2
), pp.
323
343
.
53.
Pamwani
,
L.
,
Agarwal
,
V.
, and
Shelke
,
A.
,
2019
, “
Damage Classification and Feature Extraction in Steel Moment-Resisting Frame Using Time-Varying Autoregressive Model
,”
ASME J. Nondestruct. Eval.
,
2
(
2
), p.
021002
.
54.
Desai
,
N.
,
Poling
,
J.
,
Fischer
,
G.
, and
Georgakis
,
C.
,
2018
, “
A Comparison Between the Accuracy of Two-Dimensional and Three-Dimensional Strain Measurements
,”
ASME J. Nondestruct. Eval.
,
1
(
2
), p.
021005
.
55.
Zhao
,
H.
,
Ding
,
Y.
,
Li
,
A.
,
Ren
,
Z.
, and
Yang
,
K.
,
2020
, “
Live-Load Strain Evaluation of the Prestressed Concrete Box-Girder Bridge Using Deep Learning and Clustering
,”
Struct. Health Monit.
,
19
(
4
), pp.
1051
1063
.
56.
Ghahremani
,
B.
,
Enshaeian
,
A.
, and
Rizzo
,
P.
,
2022
, “
Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis
,”
Sens J.
,
22
(
14
), p.
5172
.
You do not currently have access to this content.