Abstract

Pneumatic micro-extrusion (PME) is a direct-write additive manufacturing process, which has emerged as a robust, high-resolution method for the fabrication of a broad spectrum of biological tissues and organs. PME allows for noncontact multimaterial deposition of functional inks for tissue engineering applications. In spite of the advantages and engendered potential applications, the PME process is inherently complex, governed not only by complex physical phenomena but also by material–process interactions. Consequently, investigation of the influence of PME process parameters as well as the underlying physical phenomena behind material transport and deposition in PME would be inevitably a need. The overarching goal of this research work is to fabricate biocompatible, porous bone tissue scaffolds for the treatment of osseous fractures, defects, and diseases. In pursuit of this goal, the objectives of the work are: (i) to investigate the influence of seven consequential scaffold design factors and PME process parameters on the mechanical properties of fabricated bone tissue scaffolds and (ii) to explore the underlying dynamics behind material transport in the PME process, using a three-dimensional computational fluid dynamics (CFD) model. To investigate the effects of the design and process parameters, a series of experiments were designed and conducted. Layer height was identified as the most significant factor in this study. An increase in the layer height led to less overlap between subsequent layers, which allowed for more shrinkage and ultimately a reduction in scaffold diameter. In addition, print speed appeared as an influential factor in this study. An increase in the print speed resulted in a decline in linear mass density and thus in the extent of fusion between subsequent deposited layers. Besides, it was observed that there was a strong correlation between deposition mass and compression modulus. Overall, the results of this study pave the way for future investigation of PME-deposited polycaprolactone (PCL) scaffolds with optimal functional and medical properties for incorporation of stem cells toward the treatment of osseous fractures and defects.

References

1.
Zhao
,
D.
,
Yu
,
M.
,
Lawrence
,
L.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2020
, “
Investigation of the Influence of Consequential Design Parameters on the Mechanical Performance of Biodegradable Bone Scaffolds, Fabricated Using Pneumatic Micro-Extrusion Additive Manufacturing Process
,”
ASME
Paper No. MSEC2020-8512.10.1115/MSEC2020-8512
2.
Spoerk
,
M.
,
Gonzalez-Gutierrez
,
J.
,
Sapkota
,
J.
,
Schuschnigg
,
S.
, and
Holzer
,
C.
,
2018
, “
Effect of the Printing Bed Temperature on the Adhesion of Parts Produced by Fused Filament Fabrication
,”
Plast. Rubber Compos.
,
47
(
1
), pp.
17
24
.10.1080/14658011.2017.1399531
3.
Kim
,
B. S.
,
Yang
,
S. S.
, and
Lee
,
J.
,
2014
, “
A Polycaprolactone/Cuttlefish Bone‐Derived Hydroxyapatite Composite Porous Scaffold for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
102
(
5
), pp.
943
951
.10.1002/jbm.b.33075
4.
Kundu
,
J.
,
Shim
,
J. H.
,
Jang
,
J.
,
Kim
,
S. W.
, and
Cho
,
D. W.
,
2015
, “
An Additive Manufacturing‐Based PCL–Alginate–Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering
,”
J. Tissue Eng. Regen. Med.
,
9
(
11
), pp.
1286
1297
.10.1002/term.1682
5.
Tarafder
,
S.
, and
Bose
,
S.
,
2014
, “
Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis
,”
ACS Appl. Mater. Interfaces
,
6
(
13
), pp.
9955
9965
.10.1021/am501048n
6.
Rai
,
B.
,
Teoh
,
S.-H.
,
Hutmacher
,
D.
,
Cao
,
T.
, and
Ho
,
K.
,
2005
, “
Novel PCL-Based Honeycomb Scaffolds as Drug Delivery Systems for rhBMP-2
,”
Biomaterials
,
26
(
17
), pp.
3739
3748
.10.1016/j.biomaterials.2004.09.052
7.
Shor
,
L.
,
Güçeri
,
S.
,
Chang
,
R.
,
Gordon
,
J.
,
Kang
,
Q.
,
Hartsock
,
L.
,
An
,
Y.
, and
Sun
,
W.
,
2009
, “
Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering
,”
Biofabrication
,
1
(
1
), p.
015003
.10.1088/1758-5082/1/1/015003
8.
Park
,
S. A.
,
Lee
,
S. H.
, and
Kim
,
W. D.
,
2011
, “
Fabrication of Porous Polycaprolactone/Hydroxyapatite (PCL/HA) Blend Scaffolds Using a 3D Plotting System for Bone Tissue Engineering
,”
Bioprocess Biosyst. Eng.
,
34
(
4
), pp.
505
513
.10.1007/s00449-010-0499-2
9.
Yilgor
,
P.
,
Sousa
,
R. A.
,
Reis
,
R. L.
,
Hasirci
,
N.
, and
Hasirci
,
V.
,
2008
, “
3D Plotted PCL Scaffolds for Stem Cell Based Bone Tissue Engineering
,”
Proceedings of Macromolecular Symposia
, 269(1),
pp.
92
99
.10.1002/masy.200850911
10.
Park
,
S. H.
,
Park
,
D. S.
,
Shin
,
J. W.
,
Kang
,
Y. G.
,
Kim
,
H. K.
,
Yoon
,
T. R.
, and
Shin
,
J.-W.
,
2012
, “
Scaffolds for Bone Tissue Engineering Fabricated From Two Different Materials by the Rapid Prototyping Technique: PCL Versus PLGA
,”
J. Mater. Sci. Mater. Med.
,
23
(
11
), pp.
2671
2678
.10.1007/s10856-012-4738-8
11.
Asadi-Eydivand
,
M.
,
Solati-Hashjin
,
M.
,
Fathi
,
A.
,
Padashi
,
M.
, and
Osman
,
N. A. A.
,
2016
, “
Optimal Design of a 3D-Printed Scaffold Using Intelligent Evolutionary Algorithms
,”
Appl. Soft Comput.
,
39
, pp.
36
47
.10.1016/j.asoc.2015.11.011
12.
Deng
,
Y.
,
Jiang
,
C.
,
Li
,
C.
,
Li
,
T.
,
Peng
,
M.
,
Wang
,
J.
, and
Dai
,
K.
,
2017
, “
3D Printed Scaffolds of Calcium Silicate-Doped β-TCP Synergize With Co-Cultured Endothelial and Stromal Cells to Promote Vascularization and Bone Formation
,”
Sci. Rep.
,
7
(
1
), pp.
1
14
.10.1038/s41598-017-05196-1
13.
Mondal
,
S.
,
Nguyen
,
T. P.
,
Pham
,
V. H.
,
Hoang
,
G.
,
Manivasagan
,
P.
,
Kim
,
M. H.
,
Nam
,
S. Y.
, and
Oh
,
J.
,
2020
, “
Hydroxyapatite Nano Bioceramics Optimized 3D Printed Poly Lactic Acid Scaffold for Bone Tissue Engineering Application
,”
Ceram. Int.
,
46
(
3
), pp.
3443
3455
.10.1016/j.ceramint.2019.10.057
14.
Leukers
,
B.
,
Gülkan
,
H.
,
Irsen
,
S. H.
,
Milz
,
S.
,
Tille
,
C.
,
Schieker
,
M.
, and
Seitz
,
H.
,
2005
, “
Hydroxyapatite Scaffolds for Bone Tissue Engineering Made by 3D Printing
,”
J. Mater. Sci. Mater. Med.
,
16
(
12
), pp.
1121
1124
.10.1007/s10856-005-4716-5
15.
Jin
,
Y.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Printability Study of Hydrogel Solution Extrusion in Nanoclay Yield-Stress Bath During Printing-Then-Gelation Biofabrication
,”
Mater. Sci. Eng. C
,
80
, pp.
313
325
.10.1016/j.msec.2017.05.144
16.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.10.1115/1.4034591
17.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2016
, “
In Situ Sensor-Based Monitoring and Computational Fluid Dynamics (CFD) Modeling of Aerosol Jet Printing (AJP) Process
,”
ASME
Paper No. MSEC2016-8535.10.1115/MSEC2016-8535
18.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
A Computational Fluid Dynamics (CFD) Study of Material Transport and Deposition in Aerosol Jet Printing (AJP) Process
,”
ASME
Paper No. IMECE2018-87647.10.1115/IMECE2018-87647
19.
Feng
,
J. Q.
,
2015
, “
Sessile Drop Deformations Under an Impinging Jet
,”
Theor. Comput. Fluid Dyn.
,
29
(
4
), pp.
277
290
.10.1007/s00162-015-0353-x
20.
Feng
,
J. Q.
,
2017
, “
A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface
,”
J. Appl. Fluid Mech.
, 10(1), pp. 243–256. 10.18869/acadpub.jafm.73.238.26440
21.
Schulz
,
D.
,
Hoey
,
J.
,
Thompson
,
D.
,
Swenson
,
O.
,
Han
,
S.
,
Lovaasen
,
J.
,
Dai
,
X.
,
Braun
,
C.
,
Keller
,
K.
, and
Akhatov
,
I.
,
2008
, “
Collimated Aerosol Beam Deposition: Sub 5-μm Resolution of Printed Actives and Passives
,”
Proceedings of Flexible Electronics and Displays Conference and Exhibition
,
Institute of Electrical and Electronics Engineers (IEEE)
,
Phoenix, AZ
, Jan. 21–24, pp.
1
8
.10.1109/FEDC.2008.4483871
22.
Akhatov
,
I.
,
Hoey
,
J.
,
Swenson
,
O.
, and
Schulz
,
D.
,
2008
, “
Aerosol Focusing in Micro-Capillaries: Theory and Experiment
,”
J. Aerosol Sci.
,
39
(
8
), pp.
691
709
.10.1016/j.jaerosci.2008.04.004
23.
Akhatov
,
I.
,
Hoey
,
J.
,
Swenson
,
O.
, and
Schulz
,
D.
,
2008
, “
Aerosol Flow Through a Long Micro-Capillary: Collimated Aerosol Beam
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
215
224
.10.1007/s10404-007-0239-3
24.
Jenkins
,
M.
, and
Stamboulis
,
A.
,
2012
,
Durability and Reliability of Medical Polymers
,
Woodhead Publishing
,
Philadelphia, PA
.
25.
Correa
,
A. C.
,
Carmona
,
V. B.
,
Simão
,
J. A.
,
Mattoso
,
L. H. C.
, and
Marconcini
,
J. M.
,
2017
, “
Biodegradable Blends of Urea Plasticized Thermoplastic Starch (UTPS) and Poly (ε-Caprolactone)(PCL): Morphological, Rheological, Thermal and Mechanical Properties
,”
Carbohyd. Polym.
,
167
, pp.
177
184
.10.1016/j.carbpol.2017.03.051
26.
Zhao
,
D.
,
Hart
,
C.
,
Weese
,
N. A.
,
Rankin
,
C. M.
,
Kuzma
,
J.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2020
, “
Experimental and Computational Analysis of the Mechanical Properties of Biocompatible Bone Scaffolds, Fabricated Using Fused Deposition Modeling Additive Manufacturing Process
,”
ASME
Paper No. MSEC2020-8511.10.1115/MSEC2020-8511
27.
Yu
,
M.
,
Yeow
,
Y. J.
,
Lawrence
,
L.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2020
, “
Investigation of the Effects of Design and Process Parameters on the Mechanical Properties of Biodegradable Bone Scaffolds, Fabricated Using Pneumatic Microextrusion Process
,”
ASME
Paper No. IMECE2020-24252.10.1115/IMECE2020-24252
28.
Yeow
,
Y. J.
,
Yu
,
M.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2020
, “
A Computational Fluid Dynamics (CFD) Study of Material Flow in Pneumatic MicroExtrusion (PME) Additive Manufacturing Process
,”
ASME
Paper No. IMECE2020-24325.10.1115/IMECE2020-24325
29.
Chaffins
,
A.
,
Yu
,
M.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2021
, “
Investigation of the Functional Properties of Additively-Fabricated Triply Periodic Minimal Surface-Based Bone Scaffolds for the Treatment of Osseous Fractures
,”
ASME
Paper No. 2004.10.1115/2004
30.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education in South Asia
,
Noida, India
.
31.
ANSYS-Fluent
,
2015
,
16.2 Theory Guide
,
ANSYS
,
Canonsburg, PA
.
32.
Spoerk
,
M.
,
Sapkota
,
J.
,
Weingrill
,
G.
,
Fischinger
,
T.
,
Arbeiter
,
F.
, and
Holzer
,
C.
,
2017
, “
Shrinkage and Warpage Optimization of Expanded‐Perlite‐Filled Polypropylene Composites in Extrusion‐Based Additive Manufacturing
,”
Macromol. Mater. Eng.
,
302
(
10
), p.
1700143
.10.1002/mame.201700143
33.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P.
, and
Poliks
,
M. D.
,
2021
, “
A Computational Fluid Dynamics Investigation of Pneumatic Atomization, Aerosol Transport, and Deposition in Aerosol Jet Printing Process
,”
ASME J. Micro- Nano-Manuf.
,
9
(
1
), p.
010903
.10.1115/1.4049958
You do not currently have access to this content.