This paper presents a simulation study toward analyzing the effect of radial throw in micromilling on quality metrics and on the deviation in tool-tip trajectory from its prescribed pattern. Both the surface location error (SLE) and the sidewall (peripheral) surface roughness are analyzed. The deviation in tool-tip trajectory is evaluated considering the flute-to-flute variations in the uncut chip thickness and changes in the tooth spacing angle. Radial throw indicates the instantaneous radial location of the tool axis, thereby capturing all salient features of tool-tip trajectory deviations, such as the general elliptical form of the radial motions. This is in contrast to the concept of run-out, which is a scalar quantity (total indicator reading) indicating the total displacement or change in the radial throw measured from a perfect cylindrical surface for one complete rotation of the axis. As such, measurement and analysis of radial throw is essential to understanding micromachining processes. In our previous work, we described an experimental approach for accurate determination of radial throw when using ultra-high-speed micromachining spindles. In this work, we present a simulation-based study to relate radial throw parameters and form to SLE, sidewall surface roughness, flute-to-flute variations of uncut chip thickness, and changes in tooth spacing angle for a two fluted micro-endmill. As expected, our study concludes that the magnitude, orientation, and form of radial throw all significantly affect the studied quality metrics, tooth spacing angle, and the flute-to-flute chip thickness variations. Specifically, the presence of radial throw with an elliptical form induces up to 50% variation in SLE, up to 20% variation in sidewall surface roughness, up to 60% variation in tooth spacing angle deviations, and up to 50% variation in flute-to-flute chip thickness. As such, the presented simulation approach can be used to assess the direct (kinematic) effects of the radial throw parameters on the quality metrics and chip thickness variations.

References

1.
ISO
,
2015
, “
Test Code for Machine Tools—Geometric Accuracy of Axes of Rotation
,” International Organization for Standardization, Vernier, Geneva, Switzerland, Standard No. ISO 230-7.
2.
Lee
,
K.
, and
Dornfeld
,
D. A.
,
2004
, “
A Study of Surface Roughness in the Micro-End-Milling Process
,” Laboratory for Manufacturing and Sustainability, UC Berkele, Berkeley, CA (
epub
).https://escholarship.org/uc/item/51r6b592
3.
Schmitz
,
T. L.
,
Couey
,
J.
,
Marsh
,
E.
,
Mauntler
,
N.
, and
Hughes
,
D.
,
2007
, “
Run-Out Effects in Milling: Surface Finish, Surface Location Error, and Stability
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
841
851
.
4.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part II: Model Validation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
31120
.
5.
Nahata
,
S.
,
Onler
,
R.
,
Shekhar
,
S.
,
Korkmaz
,
E.
, and
Ozdoganlar
,
O. B.
,
2018
, “
Radial Throw in Micromachining: Measurement and Analysis
,”
Precis. Eng.
,
54
, pp.
21
32
.
6.
Nahata
,
S.
,
Onler
,
R.
,
Korkmaz
,
E.
, and
Ozdoganlar
,
O. B.
,
2018
, “
Radial Throw at the Cutting Edges of Micro-Tools When Using Ultra-High-Speed Micromachining Spindles
,”
Procedia Manuf.
,
26
, pp. 1517–1526.
7.
Anandan
,
K. P.
, and
Ozdoganlar
,
O. B.
,
2013
, “
Analysis of Error Motions of Ultra-High-Speed (UHS) Micromachining Spindles
,”
Int. J. Mach. Tools Manuf.
,
70
, pp.
1
14
.
8.
Nahata
,
S.
,
Anandan
,
K. P.
, and
Ozdoganlar
,
O. B.
,
2013
, “
LDV-Based Spindle Metrology for Ultra-High-Speed Micromachining Spindles
,”
North American Manufacturing Research Conference (NAMRC/SME)
, Madison, WI, June 10–14, pp.
2
7
.
9.
Anandan
,
K. P.
, and
Ozdoganlar
,
O. B.
,
2016
, “
A Multi-Orientation Error Separation Technique for Spindle Metrology of Miniature Ultra-High-Speed Spindles
,”
Precis. Eng.
,
43
, pp.
119
131
.
10.
Anandan
,
K. P.
,
Tulsian
,
A. S.
,
Donmez
,
A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
A Technique for Measuring Radial Error Motions of Ultra-High-Speed Miniature Spindles Used for Micromachining
,”
Precis. Eng.
,
36
(
1
), pp.
104
120
.
11.
Lu
,
X.
,
Jamalian
,
A.
, and
Graetz
,
R.
,
2011
, “
A New Method for Characterizing Axis of Rotation Radial Error Motion—Part 2: Experimental Results
,”
Precis. Eng.
,
35
(
1
), pp.
95
107
.
12.
Bediz
,
B.
,
Arda Gozen
,
B.
,
Korkmaz
,
E.
, and
Burak Ozdoganlar
,
O.
,
2014
, “
Dynamics of Ultra-High-Speed (UHS) Spindles Used for Micromachining
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
27
38
.
13.
Kim
,
G. H.
,
Yoon
,
G. S.
,
Lee
,
J. W.
,
Kim
,
H. K.
, and
Cho
,
M. W.
,
2012
, “
A Study on the Micro-Endmilling Surface Prediction Model With Non-Dynamic Errors
,”
Int. J. Precis. Eng. Manuf.
,
13
(
11
), pp.
2035
2041
.
14.
Wang
,
W.
,
Kweon
,
S. H.
, and
Yang
,
S. H.
,
2005
, “
A Study on Roughness of the Micro-End-Milled Surface Produced by a Miniatured Machine Tool
,”
J. Mater. Process. Technol.
,
162–163
, pp.
702
708
.
15.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2007
, “
Model-Based Analysis of the Surface Generation in Microendmilling—Part II: Experimental Validation and Analysis
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), p.
461
.
16.
Jing
,
X.
,
Tian
,
Y.
,
Yuan
,
Y.
, and
Wang
,
F.
,
2017
, “
A Runout Measuring Method Using Modeling and Simulation Cutting Force in Micro End-Milling
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
4191
4201
.
17.
Attanasio
,
A.
,
2017
, “
Tool Run-Out Measurement in Micro Milling
,”
Micromachines
,
8
(
7
), p.
221
.
18.
Chen
,
W.
,
Huo
,
D.
,
Teng
,
X.
, and
Sun
,
Y.
,
2017
, “
Surface Generation Modelling for Micro End Milling Considering the Minimum Chip Thickness and Tool Runout
,”
Procedia CIRP
,
58
, pp.
364
369
.
19.
Yuan
,
Y.
,
Jing
,
X.
,
Ehmann
,
K. F.
, and
Zhang
,
D.
,
2018
, “
Surface Roughness Modeling in Micro End-Milling
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
1655
1664
.
20.
Zhang
,
X.
,
Pan
,
X.
,
Wang
,
G.
, and
Zhou
,
D.
,
2018
, “
Tool Run-Out and Single-Edge Cutting in Micro-Milling
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
821
832
.
21.
Davoudinejad
,
A.
,
Tosello
,
G.
,
Parenti
,
P.
, and
Annoni
,
M.
,
2017
, “
3D Finite Element Simulation of Micro End-Milling by Considering the Effect of Tool Run-Out
,”
Micromachines
,
8
(
6
), p.
187
.
22.
Attanasio
,
A.
,
Abeni
,
A.
,
Özel
,
T.
, and
Ceretti
,
E.
,
2019
, “
Finite Element Simulation of High Speed Micro Milling in the Presence of Tool Run-Out With Experimental Validations
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
25
35
.
23.
Jun
,
M. B.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
901
912
.
24.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), p.
416
.
25.
Moges
,
T. M.
,
Desai
,
K. A.
, and
Rao
,
P. V. M.
,
2016
, “
Improved Process Geometry Model With Cutter Run-Out and Elastic Recovery in Micro-End Milling
,”
Procedia Manuf.
,
5
, pp.
478
494
.
26.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2009
, “
Modeling of Dynamic Micro-Milling Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
586
598
.
27.
Liu
,
X.
,
Jun
,
M. B. G.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-Endmilling
,”
ASME
Paper No. IMECE2004-62416.
28.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
, New York.
29.
Moges
,
T. M.
,
Desai
,
K. A.
, and
Rao
,
P. V. M.
,
2017
, “
On Modeling of Cutting Forces in Micro-End Milling Operation
,”
Mach. Sci. Technol.
,
21
(
4
), pp.
562
581
.
You do not currently have access to this content.