Abstract

Microchannel cutting on electrically nonconducting materials with electrochemical discharge machining (ECDM) process has drawn a momentous attention in manufacturing field as compared to other existing nontraditional machining processes. In the present research work, an effort has been accomplished to investigate the effects of process parameters, namely, applied voltage (V), electrolyte concentrations(wt%), pulse frequency, and duty ratio on different performance characteristics of ECDM viz., material removal rate (MRR), overcut (OC) and heat-affected zone (HAZ) area during microchannel cutting on glass. Also, the comparative performance studies during microchannel cutting have been done by using mixed electrolyte of NaOH and KOH and different tool polarities. Overcut is measured as lower (42.26 μm) when aqueous KOH electrolyte is used and as higher (133.44 μm) for aqueous NaOH electrolyte. HAZ enlarges with enrichment in concentration for both types of electrolyte. It is observed that polarity has a vital role on various machining characteristics. As compared to direct polarity, MRR is found very low (3.2 mg/h) in reverse polarity of tool. Overcut is found low in KOH electrolyte for both types of tool polarity (i.e., 64.68 μm for direct polarity and 42.27 μm for reverse polarity). The process parameters influence on the surface texture of microchannels. Microcrack is noticed for direct polarity of tool.

References

1.
Basak
,
I.
, and
Ghosh
,
A.
,
1996
, “
Mechanism of Spark Generation During Electrochemical Discharge Machining: A Theoretical Model and Experimental Verification
,”
J. Mater. Process. Technol.
,
62
(
1–3
), pp.
46
53
.10.1016/0924-0136(95)02202-3
2.
Ghosh
,
A.
,
1997
, “
Electrochemical Discharge Machining: Principle & Possibilities
,”
Sadhana
,
22
(
3
), pp.
435
447
.10.1007/BF02744482
3.
Bhattacharyya
,
B.
,
Doloi
,
B.
, and
Sorkhel
,
S. K.
,
1999
, “
Experimental Investigations Into Electrochemical Discharge Machining (ECDM) of Non-Conductive Ceramic Materials
,”
J. Mater. Process. Technol.
,
95
(
1–3
), pp.
145
154
.10.1016/S0924-0136(99)00318-0
4.
Jain
,
V. K.
,
Dixit
,
P. M.
, and
Pandey
,
P. M.
,
1999
, “
On the Analysis of the Electrochemical Spark Machining Process
,”
Int. J. Mach. Tools Manuf.
,
39
(
1
), pp.
165
186
.10.1016/S0890-6955(98)00010-8
5.
Wüthrich
,
R.
, and
Fascio
,
V.
,
2005
, “
Machining of Non-Conducting Materials Using Electrochemical Discharge Phenomenon—An Overview
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
1095
1108
.10.1016/j.ijmachtools.2004.11.011
6.
Sarkar
,
B. R.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2006
, “
Parametric Analysis on Electrochemical Discharge Machining of Silicon Nitride Ceramic
,”
Int. J. Adv. Manuf. Technol.
,
28
(
9–10
), pp.
873
881
.10.1007/s00170-004-2448-1
7.
West
,
J.
, and
Jadhav
,
A.
,
2007
, “
ECDM Methods for Fluidic Interfacing Through Thin Glass Substrates and the Formation of Spherical Microcavities
,”
J. Micromech. Microeng.
,
17
(
2
), pp.
403
409
.10.1088/0960-1317/17/2/028
8.
Han
,
M. S.
,
Min
,
B. K.
, and
Lee
,
S. J.
,
2009
, “
Geometric Improvement of Electrochemical Discharge Micro-Drilling Using an Ultrasonic-Vibrated Electrolyte
,”
J. Micromech. Microeng.
,
19
(
6
), p.
065004
.10.1088/0960-1317/19/6/065004
9.
Cheng
,
C. P.
,
Wu
,
K. L.
,
Mai
,
C. C.
,
Hsu
,
Y. S.
, and
Yan
,
B. H.
,
2010
, “
Magnetic Field-Assisted Electrochemical Discharge Machining
,”
J. Micromech. Microeng.
,
20
(
7
), p.
075019
.10.1088/0960-1317/20/7/075019
10.
Yang
,
C. K.
,
Wu
,
K. L.
,
Hung
,
J. C.
,
Lee
,
S. M.
,
Lin
,
J. C.
, and
Yan
,
B. H.
,
2011
, “
Enhancement of ECDM Efficiency and Accuracy by Spherical Tool Electrode
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
528
535
.10.1016/j.ijmachtools.2011.03.001
11.
Han
,
M. S.
,
Min
,
B. K.
, and
Sang
,
S. J.
,
2011
, “
Micro-Electrochemical Discharge Cutting of Glass Using a Surface-Textured Tool
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
4
), pp.
362
369
.10.1016/j.cirpj.2011.06.007
12.
Rajput
,
V.
,
Goud
,
M. M.
, and
Suri
,
N. M.
,
2021
, “
Multi-Spark Simulation of the Electrochemical Discharge Machining (ECDM) Process
,”
J. Mech. Sci. Technol.
,
35
(
11
), pp.
5127
5135
.10.1007/s12206-021-1029-7
13.
Dhanvijay
,
M. R.
,
Kulkarni
,
V. A.
, and
Doke
,
A.
,
2019
, “
Experimental Investigation and Analysis of Electrochemical Discharge Machining (ECDM) on Fiberglass Reinforced Plastic (FRP)
,”
J. Inst. Eng. (India): Ser. C
,
100
(
5
), pp.
763
769
.10.1007/s40032-019-00524-y
14.
Xu
,
Y.
,
Chen
,
J.
,
Jiang
,
B.
,
Liu
,
Y.
, and
Ni
,
J.
,
2018
, “
Experimental Investigation of Magnetohydrodynamic Effect in Electrochemical Discharge Machining
,”
Int. J. Mech. Sci.
,
142–143
, pp.
86
96
.10.1016/j.ijmecsci.2018.04.020
15.
Arya
,
R. K.
, and
Dvivedi
,
A.
,
2019
, “
Investigations on Quantification and Replenishment of Vaporized Electrolyte During Deep Micro-Holes Drilling Using Pressurized flow-ECDM Process
,”
J. Mater. Process. Technol.
,
266
, pp.
217
229
.10.1016/j.jmatprotec.2018.10.035
16.
Singh
,
M.
,
Singh
,
S.
, and
Kumar
,
S.
,
2020
, “
Investigating the Impact of LASER Assistance on the Accuracy of Micro-Holes Generated in Carbon Fibre Reinforced Polymer Composite by Electrochemical Discharge Machining
,”
J. Manuf. Process.
,
60
, pp.
586
595
.10.1016/j.jmapro.2020.10.056
17.
Mallick
,
B.
,
Sarkar
,
B. R.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2022
, “
Improvement of Surface Quality and Machining Depth of μ-ECDM Performances Using Mixed Electrolyte at Different Polarity
,”
Silicon
,
14
(
13
), pp.
8223
8232
.10.1007/s12633-021-01587-2
18.
Sarkar
,
B. R.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2009
, “
Investigation Into the Influences of the Power Circuit on the Micro-Electrochemical Discharge Machining Process
,”
Proc. Inst. Mech. Eng. Part B
,
223
(
2
), pp.
133
144
.10.1243/09544054JEM1258
19.
Sarkar
,
B. R.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2008
, “
Experimental Investigation Into Electrochemical Discharge Micro Drilling on Advanced Ceramics
,”
Int. J. Manuf. Technol. Manage.
,
13
(
2/3/4
), pp.
214
225
.10.1504/IJMTM.2008.016772
20.
Santra
,
S.
,
Sarkar
,
B. R.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2022
, “
Investigation Through Novel Tool-Electrode Feeding Approach on Electrochemical Discharge Machining (ECDM) of Glass
,”
Proc. Inst. Mech. Eng. Part B
,
237
(
8
), pp.
1207
1219
.10.1177/09544054221123479
21.
Jain
,
V. K.
, and
Adhikary
,
S.
,
2008
, “
On the Mechanism of Material Removal in Electrochemical Spark Machining of Quartz Under Different Polarity Conditions
,”
J. Mater. Process. Technol.
,
200
(
1–3
), pp.
460
470
.10.1016/j.jmatprotec.2007.08.071
22.
Rawal
,
S.
,
Sidpara
,
A. M.
, and
Paul
,
J.
,
2022
, “
A Review on Micro Machining of Polymer Composites
,”
J. Manuf. Process.
,
77
, pp.
87
113
.10.1016/j.jmapro.2022.03.014
23.
Bhargav
,
K. V. J.
,
Shanthan
,
P.
,
Balaji
,
P. S.
,
Sahu
,
R. K.
, and
Sahoo
,
S. K.
,
2022
, “
Generation of Microholes on GFRP Composite Using ES-micro-ECDM System
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
695
705
.10.1016/j.cirpj.2022.06.015
24.
Masuzawa
,
T.
, and
Tönshoff
,
H. K.
,
1997
, “
Three-Dimensional Micromachining by Machine Tools
,”
Ann. CIRP-Manuf. Technol.
,
46
(
2
), pp.
621
628
.10.1016/S0007-8506(07)60882-8
25.
Masuzawa
,
T.
,
2000
, “
State of the Art of Micromachining
,”
Ann. CIRP-Manuf. Technol.
,
49
(
2
), pp.
473
488
.10.1016/S0007-8506(07)63451-9
26.
Chatti
,
S.
, and
Tolio
,
T.
,
2022
,
CIRP Encyclopedia of Production Engineering
,
Springer
,
Berlin/Heidelberg
.
You do not currently have access to this content.