Abstract

A micro-cone textured copper sheet was fabricated as an emitter of electromagnetic waves in the near-infrared (IR) to the far-IR wavelengths. The micro-cone texture was aligned in semiregular by varying the micro-cone size parameters. The micro-cone height (H) was varied from 0.5 μm to 4 μm in average. Scanning electron microscopy (SEM) analysis was utilized to characterize the microstructure of micro-cone textures and to measure the population of micro-cone height (H), its root diameter (B), and pitch (D) with aid of the image processing and computational geometry. This emittance was measured by Fourier transformation-infrared (FT-IR) to investigate the micro-cone size effect on the resonant wavelengths for IR-emission. This height population P(H) was compared to the IR emission spectrum, which was measured by the FT-IR. Even varying the average height of micro-cone textures, the IR-emission wavelength (λ) abided by the resonance condition by λ ∼ 2 × H within the standard deviation of heights and wavelengths. The radiation heat flux from this emitter to objective body in vacuum was experimentally estimated to describe the heat transportation from this microtextured emitter. Through the heat radiation experiment in vacuum, the emitted heat flux was estimated to be 58 W/m2 by the one-dimensional heat balance between the heating rate of objective body and the radiated heat flux.

References

1.
Gonga
,
C.
,
Shen
,
J.
,
Yu
,
Y.
,
Wang
,
K.
, and
Tu
,
Z.
,
2020
, “
A Novel Radiator Structure for Enhanced Heat Transfer Used in PEM Fuel Cell Vehicle
,”
Int. J. Heat Mass Transfer
,
157
, p.
119926
.10.1016/j.ijheatmasstransfer.2020.119926
2.
SINDA,
2021, “
Lidar Heat Dissipation
,” SINDA, Dongguan, China, accessed Dec. 13, 2022, https://www.sindathermal.com/info/lidar-heat-dissipation-64450855.html
3.
Ganji
,
D. D.
,
Sabzehmeidani
,
Y.
, and
Sedghiamiri
,
A.
,
2018
,
Nonlinear Systems in Heat Transfer
,
Elsevier
,
London, UK
.
4.
Bergman
,
T. L.
,
2018
, “
Active Daytime Radiative Cooling Using Spectrally Selective Surfaces for Air Conditioning and Refrigeration
,”
Sol. Energy
,
174
, pp.
16
23
.10.1016/j.solener.2018.08.070
5.
Li
,
W.
, and
Fan
,
S.
,
2018
, “
Nano-Photonic Control of Thermal Radiation for Energy Applications
,”
Opt. Express
,
26
(
12
), pp.
15995
16021
.10.1364/OE.26.015995
6.
Chen
,
K.
,
Thang
,
D. D.
,
Ishii
,
S.
,
Sugavaneshwa
,
R. P.
, and
Nagao
,
T.
,
2015
, “
Selective Patterned Growth of ZnO Nanowires/Nanosheets and Their Photoluminescence Properties
,”
Opt. Mater. Express
,
5
(
2
), pp.
353
361
.10.1364/OME.5.000353
7.
Tian
,
Y.
,
Ghanekar
,
A.
,
Ricci
,
M.
,
Hyde
,
M.
,
Gregory
,
O.
, and
Zheng
,
Y.
,
2018
, “
A Review of Tunable Wavelength Selectivity of Meta-Materials in Near-Field and Far-Field Radiative Thermal Transport
,”
Materials (Basel)
,
11
(
5
), pp.
862
875
.10.3390/ma11050862
8.
Li
,
Y.
,
Li
,
W.
,
Han
,
T.
,
Zheng
,
X.
,
Li
,
J.
,
Li
,
B.
,
Fan
,
S.
, and
Qiu
,
C.-W.
,
2021
, “
Transforming Heat Transfer With Thermal Metamaterials and Devices
,”
Nat. Rev. Mater.
,
6
(
6
), pp.
488
507
.10.1038/s41578-021-00283-2
9.
Kohiyama
,
A.
,
Shimizu
,
M.
, and
Yugami
,
H.
,
2016
, “
Unidirectional Radiative Heat Transfer With a Spectrally Selective Planar Absorber/Emitter for High-Efficiency Solar Thermophotovoltaic Systems
,”
Appl. Phys. Express
,
9
(
11
), p.
112302
.10.7567/APEX.9.112302
10.
Okitusmo,
2013
, “
Development of Net Heatsink Type Thermal Emitter Materials
,”
Res. Rep. Supporting Industry
,
METI
,
Tokyo, Japan
, pp.
1
31
.
11.
Shubina
,
T. V.
,
Ivanov
,
S. V.
,
Jmerik
,
V. N.
,
Solnyshkov
,
D. D.
,
Vekshin
,
V. A.
,
Kop'ev
,
P. S.
,
Vasson
,
A.
, et al.,
2004
, “
Mie Resonances, Infrared Emission, and the Bad Gap of InN
,”
Phys. Rev. Lett.
,
92
(
11
), p.
117407
.10.1103/PhysRevLett.92.117407
12.
Lopez-Alonso
,
J. M.
,
Mandviwala
,
T.
,
Alda
,
J.
,
Lail
,
B.
, and
Boreman
,
G.
,
2005
, “
Infrared Antenna Metrology
,”
Proc. SPIE
5987
, pp. 127–132.10.1117/12.631217
13.
Pal
,
U.
,
2022
, “
Designing Antireflecting Microstructures for Infrared Applications
,” COMSOL Blog, Bengaluru, India, accessed Jan. 26, 2023, https://www.comsol.com/blogs/designing-antireflecting-microstructures-for-infrared-applications/
14.
Aizawa
,
T.
,
Nakata
,
H.
, and
Nasu
,
T.
,
2022
, “
Manufacturing and Characterization of Acicular Fe-Ni Micro-Textured Heat-Transferring Sheets
,” Proceedings of the 5th World Congress on Micro and Nano Manufacturing
WCMNM
,
Leuven, Belgium
, Sept. 21, pp.
277
281
.
15.
Aizawa
,
T.
,
Nakata
,
H.
, and
Nasu
,
T.
,
2023
, “
Fabrication and Characterization of Acicular Micro-Textured Copper-Sheet Device for Low Temperature Heat Radiation
,”
Micromachines
,
14
(
3
), p.
507
.10.3390/mi14030507
16.
Aizawa
,
T.
,
Nakata
,
H.
,
Nasu
,
T.
, and
Mitohka
,
Y.
,
2023
, “
Heat Radiation Sheet Device With Acicular Fe-Ni Alloy Micro Textures
,” Proceedings of the 6th World Congress on Micro and Nano Manufacturing
WCMNM
,
Evanston, IL
, Sept. 21, pp.
5
9
.
17.
Aizawa
,
T.
,
Nakata
,
H.
, and
Nasu
,
T.
,
2023
, “
Heat Transportation by Acicular Micro-Textured Device With Semi-Regular Alignment
,” Heat Transfer—Advances in Fundamentals and Applications, Intechopen, London, UK.
18.
Aizawa
,
T.
,
Ebina
,
S.
,
Nakata
,
H.
, and
Nasu
,
T.
,
2023
, “
Heat Transportation Device
,” Japanese Patent No.
2023
056971
.
19.
Reisecker
,
V.
,
Flatscher
,
F.
,
Porz
,
L.
,
Fincher
,
C.
,
Todt
,
J.
,
Hanghofer
,
I.
,
Hennige
,
V.
, et al.,
2023
, “
Effect of Pulse-Current-Based Protocols on the Lithium Dendrite Formation and Evolution in All-Solid-State Batteries
,”
Nat. Commun.
,
14
(
1
), p.
2432
.10.1038/s41467-023-37476-y
20.
Aizawa
,
T.
, and
Inohara
,
T.
,
2018
, “
Pico- and Femtosecond Laser Micromachining for Surface Texturing
,”
Micromachining, IntechOpen
,
London
, UK, pp.
35
62
.
21.
Aizawa
,
T.
, and
Yoshihara
,
S.-I.
,
2019
, “
Microtexturing Into AISI420 Dies for Fine Piercing of Micropatterns Into Metallic Sheets
,”
J. JSTP
,
60
(
3
), pp.
54
59
.10.9773/sosei.60.53
22.
Carslaaw
,
H. S.
, and
Jaeger
,
J. C.
,
2016
,
Conduction of Heat in Solid
,
Oxford Science Publication
, Oxford, UK.
23.
Massey
,
P. K.
,
2006
,
The Effects of UV Light and Weather on Plastics and Elastomers
,
William Andrew
, Norwich, NY.
24.
Fiore
,
T.
, and
Pellerito
,
C.
,
2021
, “
Infrared Absorption Spectroscopy
,”
Spectroscopy for Materials Characterization
,
Wiley
, Hoboken, NJ.
25.
Ando
,
T.
,
Takahashi
,
M.
, and
Takesawa
,
Y.
,
2021
, “
Heat-Radiation Materials and Its Manufacturing
,” Japanese Patent No.
2021
44403
.
26.
Wazeer
,
A.
,
Das
,
A.
,
Abeykoon
,
C.
,
Sinha
,
A.
, and
Karmakar
,
A.
,
2022
,
“Phase Change Materials Battery Thermal Management Electric Hybrid Vehicles: A Review
,” Energy Nexus,
7
, p.
100131
.10.1016/j.nexus.2022.100131
27.
Lee
,
J.
,
2016
, “
Heat Transfer in Semiconductor Nanostructures
,”
Encyclopedia of Nanotechnology
, Springer, Dordrecht, Germany, pp.
1453
1462
.
28.
Zhang
,
H.
,
Che
,
F.
,
Lin
,
T.
, and
Zhao
,
W.
,
2020
, “
Thermal Modeling, Analysis, and Design
,”
Modeling, Analysis, Design, and Tests for Electronics Packaging Beyond Moore
,
Woodhead Publishing
, Sawston, Cambridge, UK, pp.
59
129
.
29.
Chattopadhyay
,
S.
,
Huang
,
Y. F.
,
Jen
,
Y. J.
,
Ganguly
,
A.
,
Chen
,
K. H.
, and
Chen
,
L. C.
,
2010
, “
Anti-Reflecting and Photonic Nanostructures
,”
Mater. Sci. Eng.: R: Rep.
,
69
(
1–3
), pp.
1
3
.10.1016/j.mser.2010.04.001
30.
Brewer
,
J.
,
Kulkarni
,
S.
, and
Raman
,
A. P.
,
2023
, “
Resonant Anti-Reflection Metasurfaces for Infrared Transmission Optics
,”
Nano Lett.
,
23
(
19
), pp.
8940
8946
.10.1021/acs.nanolett.3c02375
You do not currently have access to this content.