Abstract

Among the promising techniques within additive manufacturing (AM), direct ink writing (DIW) stands out for its ability to work with a wide range of materials, including polymers, ceramics, glass, metals, and cement. However, DIW encounters a significant challenge in creating complex tubular structures, such as vascular scaffolds with microscale features. To address this challenge, our research investigates a novel method known as additive lathe direct ink writing (AL-DIW). AL-DIW entails the precise dispensing of ink onto a rotating mandrel to fabricate intricate hollow tubular structures with overhanging geometries. In this research, we present a series of test cases involving tubular structures, comprising straight-line patterns, curved line designs, and complex stent configurations, to underscore the efficacy of this technique in crafting hollow tubular geometries with microscale features. This study not only highlights the capabilities of AL-DIW but also contributes to the broader advancement of additive manufacturing techniques for various applications.

References

1.
Saadi
,
M. A. S. R.
,
Maguire
,
A.
,
Pottackal
,
N. T.
,
Thakur
,
M. S. H.
,
Ikram
,
M. M.
,
Hart
,
A. J.
,
Ajayan
,
P. M.
, and
Rahman
,
M. M.
,
2022
, “
Direct Ink Writing: A 3D Printing Technology for Diverse Materials
,”
Adv. Mater.
,
34
(
28
), p.
2108855
.10.1002/adma.202108855
2.
Wan
,
X.
,
Luo
,
L.
,
Liu
,
Y.
, and
Leng
,
J.
,
2020
, “
Direct Ink Writing Based 4D Printing of Materials and Their Applications
,”
Adv. Sci.
,
7
(
16
), p.
2001000
.10.1002/advs.202001000
3.
Hao
,
L.
,
Tang
,
D.
,
Sun
,
T.
,
Xiong
,
W.
,
Feng
,
Z.
,
Evans
,
K. E.
, and
Li
,
Y.
,
2021
, “
Direct Ink Writing of Mineral Materials: A Review
,”
Int. J. Precis. Eng. Manuf. Green Tech.
,
8
(
2
), pp.
665
685
.10.1007/s40684-020-00222-6
4.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A. R.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
(
1
), p.
8643
.10.1038/ncomms9643
5.
Jiang
,
Y.
,
Wang
,
X.
,
Plog
,
J.
,
Yarin
,
A. L.
, and
Pan
,
Y.
,
2021
, “
Electrowetting-Assisted Direct Ink Writing for Low-Viscosity Liquids
,”
J. Manuf. Processes
,
69
, pp.
173
180
.10.1016/j.jmapro.2021.07.028
6.
Boley
,
J. W.
,
2017
, “
High-Operating-Temperature Direct Ink Writing of Mesoscale Eutectic Architectures
,”
Adv. Mater.
,
29
(
7
), p.
1604778
.10.1002/adma.201604778
7.
Kenich
,
A.
,
Burnand-Galpin
,
M.
,
Rolland
,
E.
, and
Ibrahim
,
Y.
,
2013
, “
Lathe-Type 3D Printer
,” SCRIBD, San Francisco, CA, accessed May 16, 2024, https://www.scribd.com/doc/147351838/Lathe-Type-3D-Printer
8.
Liu
,
J.
,
Zhang
,
B.
,
Li
,
L.
,
Yin
,
J.
, and
Fu
,
J.
,
2021
, “
Additive-Lathe 3D Bioprinting of Bilayered Nerve Conduits Incorporated With Supportive Cells
,”
Bioactive Mater.
,
6
(
1
), pp.
219
229
.10.1016/j.bioactmat.2020.08.010
9.
Gao
,
Q.
,
Liu
,
Z.
,
Lin
,
Z.
,
Qiu
,
J.
,
Liu
,
Y.
,
Liu
,
A.
,
Wang
,
Y.
, et al.,
2017
, “
3D Bioprinting of Vessel-Like Structures With Multilevel Fluidic Channels
,”
ACS Biomater. Sci. Eng.
,
3
(
3
), pp.
399
408
.10.1021/acsbiomaterials.6b00643
10.
Reeser
,
K.
, and
Doiron
,
A. L.
,
2019
, “
Three-Dimensional Printing on a Rotating Cylindrical Mandrel: A Review of Additive-Lathe 3D Printing Technology
,”
3D Print. Addit. Manuf.
,
6
(
6
), pp.
293
307
.10.1089/3dp.2019.0058
11.
Holland
,
I.
,
Logan
,
J.
,
Shi
,
J.
,
McCormick
,
C.
,
Liu
,
D.
, and
Shu
,
W.
,
2018
, “
3D Bio-Fabrication for Tubular Tissue Engineering
,”
Bio-Des. Manuf.
,
1
(
2
), pp.
89
100
.10.1007/s42242-018-0013-2
12.
Jiang
,
W.
,
Zhao
,
W.
,
Zhou
,
T.
,
Wang
,
L.
, and
Qiu
,
T.
,
2022
, “
A Review on Manufacturing and Post Processing Technology of Vascular Stents
,”
Micromachines
,
13
(
1
), p.
140
.10.3390/mi13010140
13.
Somszor
,
K.
,
Bas
,
O.
,
Karimi
,
F.
,
Shabab
,
T.
,
Saidy
,
N. T.
,
O'Connor
,
A. J.
,
Ellis
,
A. V.
,
Hutmacher
,
D.
, and
Heath
,
D. E.
,
2020
, “
Personalized, Mechanically Strong, and Biodegradable Coronary Artery Stents Via Melt Electro-Writing
,”
ACS Macro Lett.
,
9
(
12
), pp.
1732
1739
.10.1021/acsmacrolett.0c00644
14.
Park
,
S. A.
,
Lee
,
S. J.
,
Lim
,
K. S.
,
Bae
,
I. H.
,
Lee
,
J. H.
,
Kim
,
W. D.
,
Jeong
,
M. H.
, and
Park
,
J.-K.
,
2015
, “
In Vivo Evaluation and Characterization of a Bio-Absorbable Drug-Coated Stent Fabricated Using a 3D-Printing System
,”
Mater. Lett.
,
141
, pp.
355
358
.10.1016/j.matlet.2014.11.119
15.
Zhang
,
B.
,
Chung
,
S. H.
,
Barker
,
S.
,
Craig
,
D.
,
Narayan
,
R. J.
, and
Huang
,
J.
,
2021
, “
Direct Ink Writing of Polycaprolactone/Polyethylene Oxide-Based 3D Constructs
,”
Prog. Nat. Sci.: Mater. Int.
,
31
(
2
), pp.
180
191
.10.1016/j.pnsc.2020.10.001
16.
Guo
,
S.
,
Gosselin
,
F.
,
Guerin
,
N.
,
Lanouette
,
A.
,
Heuzey
,
M.
, and
Therriault
,
D.
,
2013
, “
Solvent-Cast Three-Dimensional Printing of Multifunctional Microsystems
,”
Small
,
9
(
24
), pp.
4118
4122
.10.1002/smll.201300975
17.
Wang
,
C.
,
Zhang
,
L.
,
Fang
,
Y.
, and
Sun
,
W.
,
2021
, “
Design, Characterization, and 3D Printing of Cardiovascular Stents With Zero Poisson's Ratio in Longitudinal Deformation
,”
Engineering
,
7
(
7
), pp.
979
990
.10.1016/j.eng.2020.02.013
18.
Guerra
,
A. J.
, and
Ciurana
,
J.
,
2018
, “
3D-Printed Bioabsordable Polycaprolactone Stent: The Effect of Process Parameters on Its Physical Features
,”
Mater. Des.
,
137
, pp.
430
437
.10.1016/j.matdes.2017.10.045
19.
Wang
,
F.
,
Shor
,
L.
,
Darling
,
A.
,
Khalil
,
S.
,
Sun
,
W.
,
Güçeri
,
S.
, and
Lau
,
A.
,
2004
, “
Precision Extruding Deposition and Characterization of Cellular Poly‐ε‐Caprolactone Tissue Scaffolds
,”
Rapid Prototyping J.
,
10
(
1
), pp.
42
49
.10.1108/13552540410512525
20.
Boudriot
,
U.
,
Dersch
,
R.
,
Greiner
,
A.
, and
Wendorff
,
J. H.
,
2006
, “
Electrospinning Approaches Toward Scaffold Engineering—A Brief Overview
,”
Artif. Organs
,
30
(
10
), pp.
785
792
.10.1111/j.1525-1594.2006.00301.x
You do not currently have access to this content.