Abstract

This research aims to design and implement a novel task-based knee rehabilitation strategy through kinematic synthesis, assist-as-needed control strategy, and recovery tracking system. Experimental kinematic data collected through motion capture system are utilized as an input to the mechanism synthesis procedure. Parallel mechanisms with single degree-of-freedom are considered to generate the complex three-dimensional (3D) motions of the lower leg. An exact workspace synthesis approach is utilized, in which the implicit description of the workspace is made to be a function of the structural parameters of the serial chains of the parallel mechanism, making it easy to relate those parameters to the desired trajectory from the motion capture. The synthesis procedure resulted an exoskeleton which can guide the complex motion of the human knee without the need of mimicking the joint by the exoskeleton counterpart. This can potentially reduce the improper alignment problems arising due to the constantly varying axis of rotation of human joint, which is often very difficult to predict. An assist-as-needed control and recovery tracking strategy is outlined based on an electromyography (EMG) signals and force sensing resistors (FSRs) mounted on the user and exoskeleton, respectively. The EMG signal is captured from the user leg and FSRs are applied at the attachment area of the exoskeleton and the leg, this helps to get the amount of force applied by the exoskeleton to the leg as well as for the recovery tracking. The assist-as-needed controller eliminates the need of constant supervision, and hence saves time and reduces cost of the rehabilitation process. Similarly, the real-time progress tracking system will motivate and actively engage users

References

1.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Rob.
,
2011
, pp.
1
11
.10.1155/2011/759764
2.
Dam
,
M.
,
Tonin
,
P.
,
Casson
,
S.
,
Ermani
,
M.
,
Pizzolato
,
G.
,
Iaia
,
V.
, and
Battistin
,
L.
,
1993
, “
The Effects of Long-Term Rehabilitation Therapy on Poststroke Hemiplegic Patients
,”
Stroke
,
24
(
8
), pp.
1186
1191
.10.1161/01.STR.24.8.1186
3.
Krebs
,
H.
,
Volpe
,
B.
,
Aisen
,
M.
, and
Hogan
,
N.
,
2000
, “
Increasing Productivity and Quality of Care: Robot-Aided Neuro-Rehabilitation
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
639
652
.https://www.ncbi.nlm.nih.gov/pubmed/11321000
4.
Beyl
,
P.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Versluys
,
R.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2008
, “
An Exoskeleton for Gait Rehabilitation: Prototype Design and Control Principle
,” IEEE International Conference on Robotics and Automation (
ICRA 2008
), Pasadena, CA, May 19–23,
pp.
2037
2042
.10.1109/ROBOT.2008.4543506
5.
Norouzi-Gheidari
,
N.
,
Archambault
,
P. S.
, and
Fung
,
J.
,
2012
, “
Effects of Robot-Assisted Therapy on Stroke Rehabilitation in Upper Limbs: Systematic Review and Meta-Analysis of the Literature
,”
J. Rehabil. Res. Dev.
,
49
(
4
), p.
479
.10.1682/JRRD.2010.10.0210
6.
Smith
,
D.
,
Goldenberg
,
E.
,
Ashburn
,
A.
,
Kinsella
,
G.
,
Sheikh
,
K.
,
Brennan
,
P.
,
Meade
,
T.
,
Zutshi
,
D.
,
Perry
,
J.
, and
Reeback
,
J.
,
1981
, “
Remedial Therapy After Stroke: A Randomised Controlled Trial
,”
Br. Med. J.
,
282
(
6263
), pp.
517
520
.10.1136/bmj.282.6263.517
7.
Contreras-Vidal
,
J. L.
, and
Grossman
,
R. G.
,
2013
, “
Neurorex: A Clinical Neural Interface Roadmap for Eeg-Based Brain Machine Interfaces to a Lower Body Robotic Exoskeleton
,” 35th Annual International Conference in Engineering in Medicine and Biology Society (
EMBC
), Osaka, Japan, July 3–7, pp.
1579
1582
.10.1109/EMBC.2013.6609816
8.
Tucker
,
M. R.
,
Olivier
,
J.
,
Pagel
,
A.
,
Bleuler
,
H.
,
Bouri
,
M.
,
Lambercy
,
O.
,
del R Millán
,
J.
,
Riener
,
R.
,
Vallery
,
H.
, and
Gassert
,
R.
,
2015
, “
Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review
,”
J. Neuroeng. Rehabil.
,
12
(
1
), p.
1
.10.1186/1743-0003-12-1
9.
ottobock
,
2017
, “
C-Brace® Orthotronic Mobility System
,” ottobock, accessed Feb. 27, 2020, https://mcopro.com/prosthetics/technology/ottobock-c-brace-orthotronic-mobility-system/
10.
Pröbsting
,
E.
,
Kannenberg
,
A.
, and
Zacharias
,
B.
,
2017
, “
Safety and Walking Ability of Kafo Users With the C-Brace Orthotronic Mobility System, a New Microprocessor Stance and Swing Control Orthosis
,”
Prosthet. Orthot. Int.
, 41(1), pp.
65
77
.10.1177/0309364616637954
11.
Yan
,
T.
,
Cempini
,
M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2015
, “
Review of Assistive Strategies in Powered Lower-Limb Orthoses and Exoskeletons
,”
Rob. Auton. Syst.
,
64
, pp.
120
136
.10.1016/j.robot.2014.09.032
12.
Farris
,
R. J.
,
Quintero
,
H. A.
,
Murray
,
S. A.
,
Ha
,
K. H.
,
Hartigan
,
C.
, and
Goldfarb
,
M.
,
2014
, “
A Preliminary Assessment of Legged Mobility Provided by a Lower Limb Exoskeleton for Persons With Paraplegia
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
3
), pp.
482
490
.10.1109/TNSRE.2013.2268320
13.
Moon
,
H.
,
Hoang
,
N.
,
Robson
,
N. P.
, and
Langari
,
R.
,
2012
, “
Human Arm Motion Planning Against a Joint Constraint
,” Fourth IEEE RAS & EMBS International Conference in Biomedical Robotics and Biomechatronics (
BioRob
), Roma, Italy, June 24–27, pp.
401
406
.10.1109/BioRob.2012.6290923
14.
Sankai
,
Y.
,
2010
, “
Hal: Hybrid Assistive Limb Based on Cybernics
,”
Robotics Research
,
Springer
, Berlin, pp.
25
34
.10.1007/978-3-642-14743-2_3
15.
Tsaopoulos
,
D. E.
,
Baltzopoulos
,
V.
,
Richards
,
P. J.
, and
Maganaris
,
C. N.
,
2011
, “
Mechanical Correction of Dynamometer Moment for the Effects of Segment Motion During Isometric Knee-Extension Tests
,”
J. Appl. Physiol.
,
111
(
1
), pp.
68
74
.10.1152/japplphysiol.00821.2010
16.
Stillfried
,
G.
, and
van der Smagt
,
P.
,
2010
, “
Movement Model of a Human Hand Based on Magnetic Resonance Imaging (MRI)
,” 1st International Conference on Applied Bionics and Biomechanics (
ICABB
), Venice, Italy, Oct. 14–16. https://www.researchgate.net/publication/225006091_Movement_model_of_a_human_hand_based_on_magnetic_resonance_imaging_MRI
17.
Goto
,
A.
,
Leng
,
S.
,
Sugamoto
,
K.
,
Cooney
,
W. P.
,
Kakar
,
S.
, and
Zhao
,
K.
,
2014
, “
In Vivo Pilot Study Evaluating the Thumb Carpometacarpal Joint During Circumduction
,”
Clin. Orthopaed. Relat. Res.
,
472
(
4
), pp.
1106
1113
.10.1007/s11999-013-3066-8
18.
Cai
,
V. A. D.
,
Bidaud
,
P.
,
Hayward
,
V.
, and
Gosselin
,
F.
,
2017
, “
Self-Adjustment Mechanisms and Their Application for Orthosis Design
,”
Meccanica
,
52
(
3
), pp.
713
728
.10.1007/s11012-016-0574-0
19.
Trumble
,
T. N.
,
2005
, “
The Use of Nutraceuticals for Osteoarthritis in Horses
,”
Vet. Clin.: Equine Pract.
,
21
(
3
), pp.
575
597
.10.1016/j.cveq.2005.08.004
20.
Longstaff
,
L. M.
,
Sloan
,
K.
,
Stamp
,
N.
,
Scaddan
,
M.
, and
Beaver
,
R.
,
2009
, “
Good Alignment After Total Knee Arthroplasty Leads to Faster Rehabilitation and Better Function
,”
J. Arthroplasty
,
24
(
4
), pp.
570
578
.10.1016/j.arth.2008.03.002
21.
Schorsch
,
J.
,
Keemink
,
A. Q. L.
,
Stienen
,
A.
,
Van der Helm
,
F.
, and
Abbink
,
D.
,
2014
, “
A Novel Self-Aligning Mechanism to Decouple Force and Torques for a Planar Exoskeleton Joint
,”
Mech. Sci.
,
5
(
2
), pp.
29
35
.10.5194/ms-5-29-2014
22.
Erdogan
,
A.
,
Celebi
,
B.
,
Satici
,
A. C.
, and
Patoglu
,
V.
,
2017
, “
Assiston-Ankle: A Reconfigurable Ankle Exoskeleton With Series-Elastic Actuation
,”
Auton. Robots
,
41
(
3
), pp.
743
758
.10.1007/s10514-016-9551-7
23.
Lum
,
P. S.
,
Mulroy
,
S.
,
Amdur
,
R. L.
,
Requejo
,
P.
,
Prilutsky
,
B. I.
, and
Dromerick
,
A. W.
,
2009
, “
Gains in Upper Extremity Function After Stroke Via Recovery or Compensation: Potential Differential Effects on Amount of Real-World Limb Use
,”
Top. Stroke Rehabil.
,
16
(
4
), pp.
237
253
.10.1310/tsr1604-237
24.
Angeles
,
J.
,
2012
,
Spatial Kinematic Chains: Analysis-Synthesis-Optimization
,
Springer Science & Business Media
,
Berlin
.
25.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1997
,
Mechanism Design: Analysis and Synthesis
, Vol.
1
,
Prentice Hall
,
Upper Saddle River, NJ
.
26.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
, Vol.
7
,
Oxford University Press
,
Oxford, UK
.
27.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer Science & Business Media
,
Berlin
.
28.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
, McGraw-Hill Education, New York.
29.
Wu
,
J.
,
Ge
,
Q.
,
Su
,
H.-J.
, and
Gao
,
F.
,
2010
, “
Kinematic Acquisition of Geometric Constraints for Task Centered Mechanism Design
,”
ASME
Paper No. DETC2010-28287.10.1115/DETC2010-28287
30.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
3
), pp.
460
467
.10.1115/1.3267382
31.
Kim
,
H. S.
, and
Tsai
,
L.-W.
,
2003
, “
Design Optimization of a Cartesian Parallel Manipulator
,”
Trans. ASME J. Mech. Des.
,
125
(
1
), pp.
43
51
.10.1115/1.1543977
32.
Batbold
,
B.
,
Yihun
,
Y.
,
Wolper
,
J. S.
, and
Perez-Gracia
,
A.
,
2014
, “
Exact Workspace Synthesis for Rccr Linkages
,”
Computational Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
349
357
.10.1007/978-94-007-7214-4_39
33.
Buchberger
,
F.
,
2001
, “
Active Learning in Powerful Learning Environments
”.
34.
Yihun
,
Y.
,
Bosworth
,
K. W.
, and
Perez-Gracia
,
A.
,
2014
, “
Link-Based Performance Optimization of Spatial Mechanisms
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122303
.10.1115/1.4028304
35.
Jezernik
,
S.
,
Colombo
,
G.
, and
Morari
,
M.
,
2004
, “
Automatic Gait-Pattern Adaptation Algorithms for Rehabilitation With a 4-Dof Robotic Orthosis
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
574
582
.10.1109/TRA.2004.825515
36.
Duret
,
C.
, and
Mazzoleni
,
S.
,
2017
, “
Upper Limb Robotics Applied to Neurorehabilitation: An Overview of Clinical Practice
,”
NeuroRehabilitation
,
41
(
1
), pp.
5
15
.10.3233/NRE-171452
37.
Rieger
,
J. M.
,
Constantinescu
,
G.
,
Redmond
,
M. J.
,
Scott
,
D. K.
,
King
,
B. R.
,
Fedorak
,
M. V.
, and
Lundgren
,
H.
,
2017
, “
Systems and Methods for Diagnosis and Treatment of Swallowing Disorders
,” U.S. Patent No. 15/313892.
38.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
2008
,
Robot Dynamics and Control
,
Wiley
,
Hoboken, NJ
.
39.
Plagenhoef
,
S.
,
Evans
,
F. G.
, and
Abdelnour
,
T.
,
1983
, “
Anatomical Data for Analyzing Human Motion
,”
Res. Q. Exercise Sport
,
54
(
2
), pp.
169
178
.10.1080/02701367.1983.10605290
40.
Yaniger
,
S.
,
1991
, “
Force Sensing Resistors: A Review of the Technology
,”
Electro International
, New York, Apr. 16–18, pp.
666
668
.10.1109/ELECTR.1991.718294
You do not currently have access to this content.