Abstract

The rate of blood flow in the skin has relevance to several cardiovascular conditions of clinical significance. However, there is no accepted fast, easy way to noninvasively measure the volumetric rate of blood flow per unit tissue volume. Previous work has suggested the potential for using skin heating from radio frequency (RF) energy in the millimeter wave (MMW) band, with simultaneous monitoring of skin surface temperature as a means for noninvasive skin blood flow measurement. This work presents a design and in vitro test results for a simple transducer for MMW blood flow measurement. The transducer consists of a Ka band microstrip antenna and an infrared temperature sensor integrated in a thermoplastic housing. A prototype was tested in a controlled flow chamber, using a commercial tissue phantom material. The device was tested at eight flow rates ranging from 0.25 ml min−1 to 20 ml min−1, equivalent to approximately 10–800 ml min−1·per 100 cm3 of tissue. The differences in temperature increase at exposure time t=60s were statistically significant (n = 5) so as to allow resolution of flow rates of 0.25, 0.50, 1.0, 2.0, 10, and 20 ml min−1. The ensemble average of temperature increase versus time over the 60 s exposure window were described by a simple two-parameter lumped model which can be correlated with the flow rate. The flow rate model parameter does not scale directly with the flow in the experimental chamber however. This may suggest limitations either in the model or the experimental procedure.

References

1.
Hellmann
,
M.
,
Roustit
,
M.
, and
Cracowski
,
J.-L.
,
2015
, “
Skin Microvascular Endothelial Function as a Biomarker in Cardiovascular Diseases?
,”
Pharmacol. Rep.
,
67
(
4
), pp.
803
810
.10.1016/j.pharep.2015.05.008
2.
Cordovil
,
I.
,
Huguenin
,
G.
,
Rosa
,
G.
,
Bello
,
A.
,
Köhler
,
O.
,
de Moraes
,
R.
, and
Tibiriçá
,
E.
,
2012
, “
Evaluation of Systemic Microvascular Endothelial Function Using Laser Speckle Contrast Imaging
,”
Microvasc. Res.
,
83
(
3
), pp.
376
379
.10.1016/j.mvr.2012.01.004
3.
Khan
,
T. H.
,
Farooqui
,
F. A.
, and
Niazi
,
K.
,
2008
, “
Critical Review of the Ankle Brachial Index
,”
Curr. Cardiol. Rev.
,
4
(
2
), pp.
101
106
.10.2174/157340308784245810
4.
Roustit
,
M.
, and
Cracowski
,
J.-L.
,
2013
, “
Assessment of Endothelial and Neurovascular Function in Human Skin Microcirculation
,”
Trends Pharmacol. Sci.
,
34
(
7
), pp.
373
384
.10.1016/j.tips.2013.05.007
5.
Karaca
,
Ü.
,
Schram
,
M.
,
Houben
,
A.
,
Muris
,
D.
, and
Stehouwer
,
C.
,
2014
, “
Microvascular Dysfunction as a Link Between Obesity, Insulin Resistance and Hypertension
,”
Diabetes Res. Clin. Pract.
,
103
(
3
), pp.
382
387
.10.1016/j.diabres.2013.12.012
6.
Lanting
,
S. M.
,
Barwick
,
A. L.
,
Twigg
,
S. M.
,
Johnson
,
N. A.
,
Baker
,
M. K.
,
Chiu
,
S. K.
,
Caterson
,
I. D.
, and
Chuter
,
V. H.
,
2017
, “
Post-Occlusive Reactive Hyperaemia of Skin Microvasculature and Foot Complications in Type 2 Diabetes
,”
J. Diabetes Its Complications.
,
31
(
8
), pp.
1305
1310
.10.1016/j.jdiacomp.2017.05.005
7.
Çekiç
,
E. G.
,
Başaran
,
Ö.
,
Başaran
,
N. F.
,
Elmas
,
O.
,
Doğan
,
V.
,
Mert
,
G. Ö.
,
Mert
,
K. U.
,
Altun
,
I.
,
Akın
,
F.
, and
Biteker
,
M.
,
2017
, “
Cutaneous Microvascular Reactivity and Aortic Elasticity in Coronary Artery Disease: Comparison of the Laser Doppler Flowmetry and Echocardiography
,”
Microvasc. Res.
,
109
, pp.
19
25
.10.1016/j.mvr.2016.09.003
8.
Khoshnevis
,
S.
,
Brothers
,
R. M.
, and
Diller
,
K. R.
,
2018
, “
Level of Cutaneous Blood Flow Depression During Cryotherapy Depends on Applied Temperature: Criteria for Protocol Design
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
4
), p.
041007
.10.1115/1.4041463
9.
Figueiras
,
E.
,
Loureiro
,
V.
,
Ferreira
,
L.
, and
Humeau
,
A.
,
2009
, “
Some Reasons to Build a New Laser Doppler Flowmeter to Monitor Microvascular Blood Flow
,”
World Congress on Medical Physics and Biomedical Engineering
,
Springer
,
Munich, Germany
.
10.
Allen
,
J.
, and
Howell
,
K.
,
2014
, “
Microvascular Imaging: Techniques and Opportunities for Clinical Physiological Measurements
,”
Physiol. Meas.
,
35
(
7
), p.
R91
.10.1088/0967-3334/35/7/R91
11.
Bajwa
,
A.
,
Wesolowski
,
R.
,
Patel
,
A.
,
Saha
,
P.
,
Ludwinski
,
F.
,
Smith
,
A.
,
Nagel
,
E.
, and
Modarai
,
B.
,
2014
, “
Assessment of Tissue Perfusion in the Lower Limb: Current Methods and Techniques Under Development
,”
Circ.: Cardiovasc. Imaging
,
7
(
5
), pp.
836
843
.10.1161/CIRCIMAGING.114.002123
12.
Gandhi
,
O. P.
, and
Riazi
,
A.
,
1986
, “
Absorption of Millimeter Waves by Human Beings and Its Biological Implications
,”
IEEE Trans. Microwave Theory Tech.
,
34
(
2
), pp.
228
235
.10.1109/TMTT.1986.1133316
13.
Walters
,
T. J.
,
Ryan
,
K. L.
,
Nelson
,
D. A.
,
Blick
,
D. W.
, and
Mason
,
P. A.
,
2004
, “
Effects of Blood Flow on Skin Heating Induced by Millimeter Wave Irradiation in Humans
,”
Health Phys.
,
86
(
2
), pp.
115
120
.10.1097/00004032-200402000-00001
14.
Nelson
,
D. A.
,
Walters
,
T. J.
,
Ryan
,
K. L.
,
Emerton
,
K. B.
,
Hurt
,
W. D.
,
Ziriax
,
J. M.
,
Johnson
,
L. R.
, and
Mason
,
P. A.
,
2003
, “
Inter-Species Extrapolation of Skin Heating Resulting From Millimeter Wave Irradiation: Modeling and Experimental Results
,”
Health Phys.
,
84
(
5
), pp.
608
615
.10.1097/00004032-200305000-00006
15.
Nelson
,
D. A.
,
Leavesley
,
S. J.
,
Zirlott
,
C. D.
,
Yang
,
X.-M.
, and
Downey
,
J. M.
,
2018
, “
Feasibility of Using Thermal Response to Ka Band Millimeter Wave Heating to Assess Skin Blood Flow
,”
Physiol. Meas.
,
39
(
4
), p.
045001
.10.1088/1361-6579/aab4d4
16.
Charkoudian
,
N.
,
2003
, “
Skin Blood Flow in Adult Human Thermoregulation: How It Works, When It Does Not, and Why
,”
Mayo Clin. Proc.
,
78
(
5
), pp.
603
612
.10.4065/78.5.603
17.
Wissler
,
E. H.
,
2008
, “
A Quantitative Assessment of Skin Blood Flow in Humans
,”
Eur. J. Appl. Physiol.
,
104
(
2
), pp.
145
157
.10.1007/s00421-008-0697-7
18.
Hendel
,
P. M.
,
Lilien
,
D. L.
, and
Buncke
,
H. J.
,
1983
, “
A Study of the Pharmacologic Control of Blood Flow to Acute Skin Flaps Using Xenon Washout—Part I
,”
Plast. Reconstr. Surg.
,
71
(
3
), pp.
387
398
.10.1097/00006534-198303000-00018
19.
Hendel
,
P. M.
,
Lilien
,
D. L.
, and
Buncke
,
H. J.
,
1983
, “
A Study of the Pharmacologic Control of Blood Flow to Delayed Skin Flaps Using Xenon Washout—Part II
,”
Plast. Reconstr. Surg.
,
71
(
3
), pp.
399
407
.10.1097/00006534-198303000-00019
20.
Reinhardt
,
C. P.
,
Dalhberg
,
S.
,
Tries
,
M. A.
,
Marcel
,
R.
, and
Leppo
,
J. A.
,
2001
, “
Stable Labeled Microspheres to Measure Perfusion: Validation of a Neutron Activation Assay Technique
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
280
(
1
), pp.
H108
H116
.10.1152/ajpheart.2001.280.1.H108
21.
Lamping
,
K. G.
,
Christensen
,
L. P.
, and
Tomanek
,
R. J.
,
2003
, “
Estrogen Therapy Induces Collateral and Microvascular Remodeling
,”
Am. J. Physiol.: Heart. Circ. Physiol.
,
285
(
5
), pp.
H2039
H2044
.10.1152/ajpheart.00405.2003
22.
Nikolaidis
,
L. A.
,
Poornima
,
I.
,
Parikh
,
P.
,
Magovern
,
M.
,
Shen
,
Y. T.
, and
Shannon
,
R. P.
,
2006
, “
The Effects of Combined Versus Selective Adrenergic Blockade on Left Ventricular and Systemic Hemodynamics, Myocardial Substrate Preference, and Regional Perfusion in Conscious Dogs With Dilated Cardiomyopathy
,”
J. Am. Coll. Cardiol.
,
47
(
9
), pp.
1871
1881
.10.1016/j.jacc.2005.11.082
You do not currently have access to this content.