Abstract

Intra-ocular surgery requires precise submicrometer manipulations within the confined ocular space. Implementing a master-slave robotic system is a potential solution. The development of master manipulators impacts the overall performance of the robotic system. A master–slave isomorphic mapping method is used to design a master manipulator prototype. Kinematic and dynamic models of the master manipulator are established, and dynamic parameters and friction forces at each joint identified. Gravity compensation is applied to the master manipulator based on motor torque, and its efficacy is validated through experiments. The isomorphic master manipulator adapts to the required degrees-of-freedom (DOF) for intra-ocular surgery. The gravity compensates algorithm, based on torque, enables stable hovering of the master manipulator within the workspace and reduces the operating force by 71.4%. The proposed master manipulator can feasibly be applied in master–slave surgical robot systems.

References

1.
Miller
,
J. W.
,
D'Anieri
,
L. L.
,
Husain
,
D.
,
Miller
,
J. B.
, and
Vavvas
,
D. G.
,
2021
, “
Age-Related Macular Degeneration (AMD): A View to the Future
,”
J. Clin. Med.
,
10
(
5
), p.
1124
.10.3390/jcm10051124
2.
Zhu
,
J.
, and
Lamba
,
D. A.
,
2018
, “
Small Molecule-Based Retinal Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells
,”
Bio. Protoc.
,
8
(
12
), p.
e2882
.10.21769/BioProtoc.2882
3.
Shirai
,
H.
,
Mandai
,
M.
,
Matsushita
,
K.
,
Kuwahara
,
A.
,
Yonemura
,
S.
,
Nakano
,
T.
,
Assawachananont
,
J.
,
Kimura
,
T.
,
Saito
,
K.
, et al.,
2016
, “
Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in Two Primate Models of Retinal Degeneration
,”
Proc. Natl. Acad. Sci.
,
113
(
1
), pp.
E81
E90
.10.1073/pnas.1512590113
4.
Ye
,
K.
,
Takemoto
,
Y.
,
Ito
,
A.
,
Onda
,
M.
,
Morimoto
,
N.
,
Mandai
,
M.
,
Takahashi
,
M.
,
Kato
,
R.
, and
Osakada
,
F.
,
2020
, “
Reproducible Production and Image-Based Quality Evaluation of Retinal Pigment Epithelium Sheets From Human Induced Pluripotent Stem Cells
,”
Sci. Rep.
,
10
(
1
), p.
14387
.10.1038/s41598-020-70979-y
5.
Chao
,
J. R.
,
Lamba
,
D. A.
,
Klesert
,
T. R.
, Torre, A. N., Hoshino, A.,
Taylor
,
R. J.
, Jayabalu,
A.
, Engel, A. L., et al.,
2017
, “
Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells Into the Subretinal Space of a Non-Human Primate
,”
Trans. Vis. Sci. Tech.
,
6
(
3
), p. 4
.10.1167/tvst.6.3.4
6.
Changyan
,
H. E.
, and
Yang
,
Y. A. N. G.
,
2021
, “
Multipoint Force-Constrained Admittance Control for Retinal Surgical Robot
,”
J. Mech. Eng.
,
57
(
9
), pp.
12
18
.10.3901/JME.2021.09.012
7.
Jingjing
,
X. I. A. O.
,
Yang
,
Y. A. N. G.
,
Lijun
,
S. H. E. N.
,
Yiqi
,
C. H. E. N.
, and
Long
,
H.
,
2014
, “
A Robotic System for Retinal Vascular Bypass Surgery
,”
Robot
,
36
(
3
), pp.
293
299
.10.3724/SP.J.1218.2014.00293
8.
Yang
,
S.
,
MacLachlan
,
R. A.
, and
Riviere
,
C. N.
,
2015
, “
Manipulator Design and Operation of a Six-Degree-of-Freedom Handheld Tremor-Canceling Microsurgical Instrument
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
761
772
.10.1109/TMECH.2014.2320858
9.
Kim
,
E.
,
Choi
,
I.
, and
Yang
,
S.
,
2021
, “
Design and Control of Fully Handheld Microsurgical Robot for Active Tremor Cancellation
,” 2021 IEEE International Conference on Robotics and Automation (
ICRA
), Xi'an, China, May 30–June 5, pp.
12289
12295
.10.1109/ICRA48506.2021.9561200
10.
He
,
X.
,
Roppenecker
,
D.
,
Gierlach
,
D.
,
Balicki
,
M.
,
Olds
,
K.
,
Gehlbach
,
P.
,
Handa
,
J.
,
Taylor
,
R.
, and
Iordachita
,
I.
,
2012
, “
Toward Clinically Applicable Steady-Hand Eye Robot for Vitreoretinal Surgery
,”
ASME
Paper No. IMECE2012-88384.10.1115/IMECE2012-88384
11.
Gijbels
,
A.
,
Wouters
,
N.
,
Stalmans
,
P.
,
Van Brussel
,
H.
,
Reynaerts
,
D.
, and
Vander Poorten
,
E.
,
2013
, “
Design and Realisation of a Novel Robotic Manipulator for Retinal Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
3598
3603
.10.1109/IROS.2013.6696869
12.
de Smet
,
M. D.
,
Meenink
,
T. C.
,
Janssens
,
T.
,
Vanheukelom
,
V.
,
Naus
,
G. J.
,
Beelen
,
M. J.
,
Meers
,
C.
,
Jonckx
,
B.
, and
Stassen
,
J. M.
,
2016
, “
Robotic Assisted Cannulation of Occluded Retinal Veins
,”
PLoS One
,
11
(
9
), p.
e0162037
.10.1371/journal.pone.0162037
13.
Wilson
,
J. T.
,
Gerber
,
M. J.
,
Prince
,
S. W.
,
Chen
,
C. W.
,
Schwartz
,
S. D.
,
Hubschman
,
J. P.
, and
Tsao
,
T. C.
,
2018
, “
Intraocular Robotic Interventional Surgical System (IRISS): Mechanical Design, Evaluation, and Master–Slave Manipulation
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(
1
), p.
e1842
.10.1002/rcs.1842
14.
Marinho
,
M. M.
,
Harada
,
K.
,
Morita
,
A.
, and
Mitsuishi
,
M.
,
2020
, “
SmartArm: Integration and Validation of a Versatile Surgical Robotic System for Constrained Workspaces
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
16
(
2
), p.
e2053
.10.1002/rcs.2053
15.
He
,
C. Y.
,
Huang
,
L.
,
Yang
,
Y.
,
Liang
,
Q. F.
, and
Li
,
Y. K.
,
2018
, “
Research and Realization of a Master-Slave Robotic System for Retinal Vascular Bypass Surgery
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
10
.10.1186/s10033-018-0278-6
16.
Nambi
,
M.
,
Bernstein
,
P. S.
, and
Abbott
,
J. J.
,
2016
, “
A Compact Telemanipulated Retinal-Surgery System That Uses Commercially Available Instruments With a Quick-Change Adapter
,”
J. Med. Rob. Res.
,
01
(
2
), p.
1630001
.10.1142/S2424905X16300016
17.
Nasseri
,
M. A.
,
Eder
,
M.
,
Nair
,
S.
,
Dean
,
E. C.
,
Maier
,
M.
,
Zapp
,
D.
,
Lohmann
,
C. P.
, and
Knoll
,
A.
,
2013
, “
The Introduction of a New Robot for Assistance in Ophthalmic Surgery
,” 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Osaka, Japan, July 3–7, pp.
5682
5685
.10.1109/EMBC.2013.6610840
18.
Edwards
,
T. L.
,
Xue
,
K.
,
Meenink
,
H. C. M.
,
Beelen
,
M. J.
,
Naus
,
G. J. L.
,
Simunovic
,
M. P.
,
Latasiewicz
,
M.
,
Farmery
,
A. D.
,
de Smet
,
M. D.
, et al.,
2018
, “
First-in-Human Study of the Safety and Viability of Intraocular Robotic Surgery
,”
Nat. Biomed. Eng.
,
2
(
9
), pp.
649
656
.10.1038/s41551-018-0248-4
19.
Gijbels
,
A.
,
Smits
,
J.
,
Schoevaerdts
,
L.
,
Willekens
,
K.
,
Vander Poorten
,
E. B.
,
Stalmans
,
P.
, and
Reynaerts
,
D.
,
2018
, “
In-Human Robot-Assisted Retinal Vein Cannulation, a World First
,”
Ann. Biomed. Eng.
,
46
(
10
), pp.
1676
1685
.10.1007/s10439-018-2053-3
20.
Gijbels
,
A.
,
Willekens
,
K.
,
Esteveny
,
L.
,
Stalmans
,
P.
,
Reynaerts
,
D.
, and
Vander Poorten
,
E. B.
,
2016
, “
Towards a Clinically Applicable Robotic Assistance System for Retinal Vein Cannulation
,” 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (
BioRob
), Singapore, June 26–29, pp.
284
291
.10.1109/BIOROB.2016.7523639
21.
Su
,
P.
,
Deng
,
S.
,
Huang
,
L.
,
Song
,
Y.
,
Liu
,
X.
, and
Yang
,
Y.
,
2016
, “
Analysis and Evaluation of a Robotic Trephination in Penetrating Keratoplasty
,”
ASME J. Med. Devices
,
10
(
2
), p.
024503
.10.1115/1.4032869
22.
Jingjing
,
X.
,
Long
,
H.
,
Lijun
,
S.
, and
Yang
,
Y.
,
2014
, “
Design and Research of a Robotic Aided System for Retinal Vascular Bypass Surgery
,”
ASME J. Med. Devices
,
8
(
4
), p.
044501
.10.1115/1.4027230
23.
Nguyen
,
V. S.
,
Hwang
,
B.
,
Lee
,
S.
,
Kim
,
S.
, and
Kim
,
B.
,
2023
, “
Three Degrees of Freedom-Based Master-Slave Uterine Manipulation Robot System for Laparoscopic Hysterectomy
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021001
.10.1115/1.4054608
24.
Hendrix
,
R.
,
2011
, “
Robotically Assisted Eye Surgery: A Haptic Master Console
,”
Ph.D. thesis
, Research TU/e / Graduation TU/e, Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.10.6100/IR696904
25.
Zuo
,
S.
,
Wang
,
Z.
,
Zhang
,
T.
, and
Chen
,
B.
,
2021
, “
A Novel Master–Slave Intraocular Surgical Robot With Force Feedback
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
17
(
4
), p.
e2267
.10.1002/rcs.2267
26.
Lee
,
H.
,
Cheon
,
B.
,
Hwang
,
M.
,
Kang
,
D.
, and
Kwon
,
D. S.
,
2018
, “
A Master Manipulator With a Remote‐Center‐of‐Motion Kinematic Structure for a Minimally Invasive Robotic Surgical System
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
14
(
1
), p.
e1865
.10.1002/rcs.1865
27.
Song
,
B. K.
,
Kang
,
S. R.
,
Cha
,
S. W.
,
Hwang
,
Y. H.
,
Oh
,
J. S.
, and
Choi
,
S. B.
,
2018
, “
Design of a Novel 6-DOF Haptic Master Mechanism Using MR Clutches and Gravity Compensator
,”
Mech. Based Des. Struct. Mach.
,
46
(
6
), pp.
767
780
.10.1080/15397734.2018.1469094
28.
Wu
,
B.
,
Ding
,
R.
,
Zhong
,
J.
,
Qian
,
C.
,
Lin
,
W.
, and
Li
,
H.
,
2016
, “
Gravity and Friction Compensation Algorithm for Master Manipulator Based on Genetic Algorithm
,” 31st Youth Academic Annual Conference of Chinese Association of Automation (
YAC
), Wuhan, China, Nov. 11–13, pp.
219
224
.10.1109/YAC.2016.7804892
29.
Desai
,
J.
, and
Howe
,
R.
,
2001
, “
Towards the Development of a Humanoid Arm by Minimizing Interaction Forces Through Minimum Impedance Control
,”
IEEE International Conference on Robotics and Automation (Cat. No.01CH37164)
, ICRA, Vol.
4
, Seoul, Korea (South), May 21–26, pp.
4214
4219
.10.1109/ROBOT.2001.933276
30.
Charles
,
M. W.
, and
Brown
,
N.
,
1975
, “
Dimensions of the Human Eye Relevant to Radiation Protection (Dosimetry)
,”
Phys. Med. Biol.
,
20
(
2
), pp.
202
218
.10.1088/0031-9155/20/2/002
31.
Qian
,
D.
, and
Hongmei
,
Z.
,
2013
, “
The Advance in Researches of Friction Dynamics in Mechanics System
,”
Adv. Mech.
,
43
(
1
), pp.
112
131
.10.6052/1000-0992-12-039
32.
Kawasaki
,
H.
,
Beniya
,
Y.
, and
Kanzaki
,
K.
,
1992
, “
Minimum Dynamics Parameters of Tree Structure Robot Models
,”
Trans. Soc. Instrument Control Eng.
,
28
(
12
), pp.
1444
1450
.10.9746/sicetr1965.28.1444
33.
Swevers
,
J.
,
Ganseman
,
C.
,
Tukel
,
D. B.
,
De Schutter
,
J.
, and
Van Brussel
,
H.
,
1997
, “
Optimal Robot Excitation and Identification
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
730
740
.10.1109/70.631234
34.
Lei
,
Y.
,
Li
,
Y.
,
Song
,
R.
,
Wang
,
D.
,
Zhang
,
T.
,
Zhang
,
G.
, and
Du
,
F.
,
2022
, “
Design and Experimental Validation of a Master Manipulator With Position and Posture Decoupling for Laparoscopic Surgical Robot
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
18
(
4
), p.
e2398
.10.1002/rcs.2398
You do not currently have access to this content.