Abstract

Femoral neck fractures, comprising 8–10% of all bodily fractures in the elderly, often necessitate alternatives to extensive surgical interventions. Despite limited research, external fixators are considered promising. This study evaluates the design and durability of a novel modular axial fixator (MAF) for stable and unstable proximal femoral fractures, using numerical method-based engineering analysis. Employing patient-specific CT scan data, three-dimensional (3D) solid modeling, and finite element analysis (FEA), the MAF-bone fixation is examined in eight simulation scenarios under static loading conditions. FEA results show a peak femur head displacement of 7.429 mm in FEA 001, with Schanz screw no. 2 reaching the maximum equivalent stress at 431.060 MPa in FEA-006. Notably, the 7.429-mm displacement improves stability compared to previous studies, yet interfragmentary movement surpasses the 100–200 μm reference range for primary fracture healing, posing challenges to direct healing despite enhanced stability. This study validates the durability of the innovative MAF for femoral neck fractures through engineering simulations. It contributes to understanding MAF durability issues, with implications for improving medical implant design in the industry. Simulation results offer opportunities for optimizing structure and production, enhancing the MAF's design, and ultimately benefiting medical implant manufacturing.

References

1.
Mittal
,
R.
, and
Banerjee
,
S.
,
2012
, “
Proximal Femoral Fractures: Principles of Management and Review of Literature
,”
J. Clin. Orthop. Trauma
,
3
(
1
), pp.
15
23
.10.1016/j.jcot.2012.04.001
2.
Panteli
,
M.
,
Rodham
,
P.
, and
Giannoudis
,
P. V.
,
2015
, “
Biomechanical Rationale for Implant Choices in Femoral Neck Fracture Fixation in the Non-Elderly
,”
Injury
,
46
(
3
), pp.
445
452
.10.1016/j.injury.2014.12.031
3.
Samsami
,
S.
,
Saberi
,
S.
,
Sadighi
,
S.
, and
Rouhi
,
G.
,
2015
, “
Comparison of Three Fixation Methods for Femoral Neck Fracture in Young Adults: Experimental and Numerical Investigations
,”
J. Med. Biol. Eng.
,
35
(
5
), pp.
566
579
.10.1007/s40846-015-0085-9
4.
Shen
,
M.
,
Wang
,
C.
,
Chen
,
H.
,
Rui
,
Y.
, and
Zhao
,
S.
,
2016
, “
An Update on the Pauwels Classification
,”
J. Orthop. Surg. Res.
,
11
(
1
), p.
161
.10.1186/s13018-016-0498-3
5.
Nandi
,
S.
,
2021
, “
Revisiting Pauwels' Classification of Femoral Neck Fractures
,”
World J. Orthop.
,
12
(
11
), pp.
811
815
.10.5312/wjo.v12.i11.811
6.
Adanaş
,
C.
, and
Özkan
,
S.
,
2019
, “
Comparison of External Fixation and Intramedullary Nailing in Geriatric Patients With Intertrochanteric Fractures of the Femur
,”
J. Surg. Med.
,
3
(
12
), pp.
833
836
.10.28982/josam.651957
7.
Catagni
,
M.
,
Sdeek
,
M.
,
Guerreschi
,
F.
,
Lovisetti
,
L.
, and
Tsibidakis
,
H.
,
2012
, “
Management of Proximal Femoral Fractures Using the Ilizarov Principles
,”
Acta Orthop. Belg.
,
78
(
5
), pp.
588
591
.https://pubmed.ncbi.nlm.nih.gov/23162953/
8.
Ganz
,
R.
,
Thomas
,
R. J.
, and
Hammerle
,
C. P.
,
1979
, “
Trochanteric Fractures of the Femur. Treatment and Results
,”
Clin. Orthop. Relat. Res.
,
138
, pp.
30
40
.https://pubmed.ncbi.nlm.nih.gov/445914/
9.
Kaufer
,
H.
,
1980
, “
Mechanics of the Treatment of Hip Injuries
,”
Clin. Orthop. Relat. Res.
,
146
, pp.
53
61
.10.1097/00003086-198001000-00008
10.
Gotfried
,
Y.
,
Frish
,
E.
,
Mendes
,
D. G.
, and
Roffman
,
M.
,
1985
, “
Intertrochanteric Fractures in High Risk Geriatric Patients Treated by External Fixation
,”
Orthopedics
,
8
(
6
), pp.
769
774
.10.3928/0147-7447-19850601-13
11.
Dhal
,
A.
, and
Singh
,
S. S.
,
1996
, “
Biological Fixation of Subtrochanteric Fractures by External Fixation
,”
Injury
,
27
(
10
), pp.
723
731
.10.1016/S0020-1383(96)00116-7
12.
Christodoulou
,
N. A.
, and
Sdrenias
,
C. V.
,
2000
, “
External Fixation of Select Intertrochanteric Fractures With Single Hip Screw
,”
Clin. Orthop. Relat. Res.
,
381
, pp.
204
211
.10.1097/00003086-200012000-00024
13.
Moroni
,
A.
,
Faldini
,
C.
,
Pegreffi
,
F.
,
Hoang-Kim
,
A.
,
Vannini
,
F.
, and
Giannini
,
S.
,
2005
, “
Dynamic Hip Screw Compared With External Fixation for Treatment of Osteoporotic Pertrochanteric Fractures. A Prospective, Randomized Study
,”
J. Bone Jt. Surg. Am.
,
87
(
4
), pp.
753
759
.10.2106/00004623-200504000-00009
14.
Ozdemir
,
H.
,
Urgüden
,
M.
,
Dabak
,
T. K.
, and
Söyüncü
,
Y.
,
2002
, “
Treatment of İntertrochanteric Femoral Fractures With the Use of a Modular Axial Fixator Device
,”
Acta Orthop. Traumatol. Turc.
,
36
(
5
), pp.
375
383
.https://pubmed.ncbi.nlm.nih.gov/12594342/
15.
ÖZdemir
,
H.
,
Dabak
,
T. K.
,
Ürgüden
,
M.
, and
GüR
,
S.
,
2003
, “
A Different Treatment Modality for Trochanteric Fractures of the Femur in Surgical High-Risk Patients: A Clinical Study of 44 Patients With 21-Month Follow-Up
,”
Arch. Orthop. Trauma Surg.
,
123
(
10
), pp.
538
543
.10.1007/s00402-003-0578-9
16.
Ozdemir
,
H.
,
Onder
,
Y.
, and
Dabak
,
T. K.
,
2016
, “
Modular Axial Fixator Is a Reliable Method for Stable Proximal Femoral Fracture - A Finite Element Analysis and Mechanical Study
,”
Akdeniz Med. J.
,
2
(
2
), pp.
63
73
.10.17954/amj.2016.49
17.
Ye
,
Y.
,
You
,
W.
,
Zhu
,
W.
,
Cui
,
J.
,
Chen
,
K.
, and
Wang
,
D.
,
2017
, “
The Applications of Finite Element Analysis in Proximal Humeral Fractures
,”
Comput. Math. Methods Med.
,
2017
, pp.
1
9
.10.1155/2017/4879836
18.
Lewis
,
G. S.
,
Mischler
,
D.
,
Wee
,
H.
,
Reid
,
J. S.
, and
Varga
,
P.
,
2021
, “
Finite Element Analysis of Fracture Fixation
,”
Curr. Osteoporos. Rep.
,
19
(
4
), pp.
403
416
.10.1007/s11914-021-00690-y
19.
Saha
,
S.
, and
Roychowdhury
,
A.
,
2009
, “
Application of the Finite Element Method in Orthopedic Implant Design
,”
J. Long-Term. Eff. Med. Implants
,
19
(
1
), pp.
55
82
.10.1615/jlongtermeffmedimplants.v19.i1.70
20.
Heller
,
M. O.
,
2022
, “
Chapter 32 - Finite Element Analysis in Orthopedic Biomechanics
,”
Human Orthopaedic Biomechanics
,
B.
Innocenti
, and
F.B.T.-H.O.B.
Galbusera
, eds.,
Academic Press
,
London, UK
, pp.
637
658
.
21.
Samsami
,
S.
,
Augat
,
P.
, and
Rouhi
,
G.
,
2019
, “
Stability of Femoral Neck Fracture Fixation: A Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H
,
233
(
9
), pp.
892
900
.10.1177/0954411919856138
22.
Ugural
,
A. C.
, and
Fenster
,
S. K.
,
2003
,
Advanced Strength and Applied Elasticity
,
Prentice Hall
,
Hoboken, NJ
.
23.
Rembold
,
U.
,
Nnaji
,
B. O.
, and
Storr
,
A.
,
1993
,
Computer Integrated Manufacturing and Engineering
,
Addison-Wesley Pub. Co
,
Wokingham, UK
.
24.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
,
2004
, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
,
26
(
1
), pp.
61
69
.10.1016/S1350-4533(03)00138-3
25.
Peng
,
L.
,
Bai
,
J.
,
Zeng
,
X.
, and
Zhou
,
Y.
,
2006
, “
Comparison of Isotropic and Orthotropic Material Property Assignments on Femoral Finite Element Models Under Two Loading Conditions
,”
Med. Eng. Phys.
,
28
(
3
), pp.
227
233
.10.1016/j.medengphy.2005.06.003
26.
Luo
,
S.
,
Shen
,
X.
,
Bai
,
X.
,
Bai
,
J.
,
Han
,
J.
, and
Shang
,
Y.
,
2017
, “
Validation of Material Algorithms for Femur Remodelling Using Medical Image Data
,”
Appl. Bionics Biomech.
,
2017
, pp.
1
10
.10.1155/2017/5932545
27.
MatWeb
,
2023
, “
MatWeb: Online Materials Information Resource
,”
MatWeb
,
Blacksburg, VA
, accessed Nov. 20, 2023, https://www.matweb.com/
28.
Eschweiler
,
J.
,
Fieten
,
L.
,
Dell'Anna
,
J.
,
Kabir
,
K.
,
Gravius
,
S.
,
Tingart
,
M.
, and
Radermacher
,
K.
,
2012
, “
Application and Evaluation of Biomechanical Models and Scores for the Planning of Total Hip Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
12
), pp.
955
967
.10.1177/0954411912445261
29.
Marsell
,
R.
, and
Einhorn
,
T. A.
,
2011
, “
The Biology of Fracture Healing
,”
Injury
,
42
(
6
), pp.
551
555
.10.1016/j.injury.2011.03.031
30.
Søballe
,
K.
,
1993
, “
Hydroxyapatite Ceramic Coating for Bone Implant Fixation
,”
Acta Orthop. Scand.
,
64
(
sup255
), pp.
1
58
.10.3109/17453679309155636
31.
Fujie
,
H.
,
Mabuchi
,
K.
,
Yamamoto
,
M.
, and
Sasada
,
S.
,
1988
, “
Negative Effect of Mechanical Stimulation of Fracture Healing
,”
Seikeigeka Biomech.
,
10
, pp.
21
25
.
32.
Shapiro
,
F.
,
1988
, “
Cortical Bone Repair. The Relationship of the Lacunar-Canalicular System and Intercellular Gap Junctions to the Repair Process
,”
J. Bone Jt. Surg.
,
70
(
7
), pp.
1067
1081
.10.2106/00004623-198870070-00016
33.
Blecha
,
L. D.
,
Zambelli
,
P. Y.
,
Ramaniraka
,
N. A.
,
Bourban
,
P.-E.
,
Månson
,
J.-A.
, and
Pioletti
,
D. P.
,
2005
, “
How Plate Positioning Impacts the Biomechanics of the Open Wedge Tibial Osteotomy; A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
307
313
.10.1080/10255840500322433
34.
Yunus Emre
,
T.
,
Kursat Celik
,
H.
,
Arik
,
H. O.
,
Rennie
,
A. E. W.
, and
Kose
,
O.
,
2022
, “
Effect of Coronal Fracture Angle on the Stability of Screw Fixation in Medial Malleolar Fractures: A Finite Element Analysis
,”
Proc. Inst. Mech. Eng. Part H
,
236
(
6
), pp.
825
840
.10.1177/09544119221089723
35.
Jagodzinski
,
M.
, and
Krettek
,
C.
,
2007
, “
Effect of Mechanical Stability on Fracture Healing-an Update
,”
Injury
,
38
(
1
), pp.
S3
S10
.10.1016/j.injury.2007.02.005
36.
ANSYS Product Doc.
,
2019
,
ANSYS Meshing User's Guide: Skewness (Release 2019 R2
,
ANSYS Inc.
,
Canonburg, PA
.
37.
Brys
,
G.
,
Hubert
,
M.
, and
Struyf
,
A.
,
2004
, “
A Robust Measure of Skewness
,”
J. Comput. Graph. Stat.
,
13
(
4
), pp.
996
1017
.10.1198/106186004X12632
38.
Cheung
,
J. TM.
, and
Zhang
,
M.
,
2005
, “
A 3-Dimensional Finite Element Model of the Human Foot and Ankle for Insole Design
,”
Arch. Phys. Med. Rehabil.
,
86
(
2
), pp.
353
358
.10.1016/j.apmr.2004.03.031
You do not currently have access to this content.