Abstract

This paper innovatively proposes an artificial knee joint customization design scheme based on modular wearable sensors. It aims to solve the compatibility and security problem of wearable devices for different individual knee joints. The method consists of two main parts: measurement and customization. A wearable sensor with three joints is proposed and analyzed. The sensor can measure the kinematic characteristics of human knee joints to obtain the customized design parameters of artificial joints. Designed a bionic four-link knee joint, and the parameters of the connecting rod were optimized by a genetic algorithm based on the measured data. In particular, the measuring device and knee joint are designed in a modular way, and they can be used on the same platform. The modular design method can be used to customize joints for different individuals, which simplifies the difficulty of customization and effectively reduces the cost. After the modular knee joint's optimized design, this paper mainly conducted a number of comparative tests. The comparative test results of three joints show that the dynamic tracking accuracy of customized joints is 54.9% higher than that of ordinary joints and 70.5% higher than that of hinge joints. The results show that personalized customization for individuals can improve human-machine coupling performance.

References

1.
Kim
,
H.
,
Lim
,
D.
,
Kim
,
W.
, and
Han
,
C.
,
2020
, “
Development of a Passive Modular Knee Mechanism for a Lower Limb Exoskeleton Robot and Its Effectiveness in the Workplace
,”
Int. J. Precis. Eng. Manuf.
,
21
(
2
), pp.
227
236
.10.1007/s12541-019-00217-7
2.
Cempini
,
M.
,
De Rossi
,
S. M. M.
,
Lenzi
,
T.
,
Vitiello
,
N.
, and
Carrozza
,
M. C.
,
2013
, “
Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method
,”
IEEE Trans. Robot.
,
29
(
1
), pp.
236
250
.10.1109/TRO.2012.2226381
3.
Xiao
,
Y.
,
Ji
,
X.
,
Wu
,
H.
,
Zhai
,
X.
,
Fu
,
X.
, and
Zhao
,
J.
,
2020
, “
Bionic Knee Joint Structure and Motion Analysis of a Lower Extremity Exoskeleton
,”
Fourth International Conference on Robotics and Automation Sciences (ICRAS)
, Wuhan, China, June 12–14, pp.
91
95
.10.1109/ICRAS49812.2020.9135067
4.
Jiménez
,
G. R.
,
Salgado
,
D. R.
,
Sanchez
,
F. J. A.
, and
del Castillo Granados
,
J. M.
,
2019
, “
A New Stance Control Knee Orthosis Using a Self-Locking Mechanism Based on a Planetary Gear Train
,”
ASME J. Mech. Des.
,
141
(
6
), p.
065001
.10.1115/1.4041780
5.
Liu
,
J.
,
He
,
Y.
,
Yang
,
J.
,
Cao
,
W.
, and
Wu
,
X.
,
2022
, “
Design and Analysis of a Novel 12-DOF Self-Balancing Lower Extremity Exoskeleton for Walking Assistance
,”
Mech. Mach. Theory
,
167
(
2022
), p.
104519
.10.1016/j.mechmachtheory.2021.104519
6.
Ekelem
,
A.
,
Bastas
,
G.
,
Durrough
,
C. M.
, and
Goldfarb
,
M.
,
2018
, “
Variable Geometry Stair Ascent and Descent Controller for a Powered Lower Limb Exoskeleton
,”
ASME J. Med. Devices
,
12
(
3
), p.
031009
.10.1115/1.4040699
7.
Choi
,
B.
,
Lee
,
Y.
,
Kim
,
Y. J.
,
Lee
,
J.
, and
Shim
,
Y.
,
2017
, “
Development of Adjustable Knee Joint for Walking Assistance Devices
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS)
, Vancouver, BC, Canada, Sept. 24–28, pp.
1790
1797
.10.1109/IROS.2017.8205993
8.
Yan
,
H.
,
Yang
,
C.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2014
, “
Design and Validation of a Compatible 3-Degrees of Freedom Shoulder Exoskeleton With an Adaptive Center of Rotation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071006
.10.1115/1.4027284
9.
Li
,
H.
,
Sui
,
D.
,
Ju
,
H.
,
An
,
Y.
,
Zhao
,
J.
, and
Zhu
,
Y.
,
2022
, “
Mechanical Compliance and Dynamic Load Isolation Design of Lower Limb Exoskeleton for Locomotion Assistance
,”
IEEE ASME Trans. Mechatron.
,
27
(
6
), pp.
5392
5402
.10.1109/TMECH.2022.3181261
10.
Sarkisian
,
S. V.
,
Ishmael
,
M. K.
,
Hunt
,
G. R.
, and
Lenzi
,
T.
,
2020
, “
Design, Development, and Validation of a Self-Aligning Mechanism for High-Torque Powered Knee Exoskeletons
,”
IEEE Trans. Med. Robot. Bionics
,
2
(
2
), pp.
248
259
.10.1109/TMRB.2020.2981951
11.
Dai
,
C.
,
Fu
,
P.
,
Zhong
,
B.
,
Guo
,
K.
, and
Zhang
,
M.
,
2022
, “
Human-Exoskeleton Misalignment Reduction on Knee Joint Via an RPR Mechanism-Based Device
,” International Conference on Advanced Robotics and Mechatronics (
ICARM
), Guilin, China, July 9–11, pp.
45
50
.10.1109/ICARM54641.2022.9959600
12.
Tang
,
X.
, and
Chen
,
L.
,
2018
, “
Structural Design of a Novel Wearable Knee Exoskeleton
,”
International Conference on Manufacturing Science & Engineering
, Shenzhen, China, Mar. 30–31.10.2991/icmse-18.2018.68
13.
Lee
,
Y.
,
Kim
,
Y.-J.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE ASME Trans. Mechatron.
,
22
(
5
), pp.
2058
2069
.10.1109/TMECH.2017.2718999
14.
Wang
,
J.
,
Li
,
X.
,
Huang
,
T. H.
,
Yu
,
S.
,
Li
,
Y.
,
Chen
,
T.
,
Carriero
,
A.
,
Oh-Park
,
M.
, and
Su
,
H.
,
2018
, “
Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
4265
4272
.10.1109/LRA.2018.2864352
15.
Gao
,
M.
,
Wang
,
Z.
,
Li
,
S.
,
Li
,
J.
,
Pang
,
Z.
,
Liu
,
S.
, and
Duan
,
Z.
,
2021
, “
Design and Optimization of Exoskeleton Structure of Lower Limb Knee Joint Based on Cross Four-Bar Linkage
,”
AIP Adv.
,
11
(
6
), p. 065124.10.1063/5.0053899
16.
Gao
,
M.
,
Wang
,
Z.
,
Pang
,
Z.
,
Sun
,
J.
,
Li
,
J.
,
Li
,
S.
, and
Zhang
,
H.
,
2022
, “
Electrically Driven Lower Limb Exoskeleton Rehabilitation Robot Based on Anthropomorphic Design
,”
Machines
,
10
(
4
), p.
266
.10.3390/machines10040266
17.
Zhang
,
Y.
,
Wang
,
E.
,
Wang
,
M.
,
Liu
,
S.
, and
Ge
,
W.
,
2021
, “
Design and Experimental Research of Knee Joint Prosthesis Based on Gait Acquisition Technology
,”
Biomimetics
,
6
(
2
), p.
28
.10.3390/biomimetics6020028
18.
Singh
,
R.
,
Chaudhary
,
H.
, and
Singh
,
A. K.
,
2017
, “
Defect-Free Optimal Synthesis of Crank-Rocker Linkage Using Nature-Inspired Optimization Algorithms
,”
Mech. Mach. Theory
,
116
(
2017
), pp.
105
122
.10.1016/j.mechmachtheory.2017.05.018
19.
Xiao
,
B.
,
Shao
,
Y.
, and
Zhang
,
W.
,
2019
, “
Design and Optimization of Single-Degree-of-Freedom Six-Bar Mechanisms for Knee Joint of Lower Extremity Exoskeleton Robot
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Dali, China, Dec. 6–8, pp.
2861
2866
.10.1109/ROBIO49542.2019.8961400
20.
Hyun
,
A. J.
,
Park
,
H.
,
Ha
,
T.
,
Park
,
S.
, and
Jung
,
K.
,
2017
, “
Biomechanical Design of an Agile, Electricity-Powered Lower-Limb Exoskeleton for Weight-Bearing Assistance
,”
Rob. Auton. Syst.
,
95
, pp.
181
195
.10.1016/j.robot.2017.06.010
21.
Yang
,
W.
,
Yang
,
C.-J.
, and
Wei
,
Q.-X.
,
2014
, “
Design of an Anthropomorphic Lower Extremity Exoskeleton With Compatible Joints
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO 2014
), Bali, Indonesia, Dec. 5–10, pp.
1374
1379
.10.1109/ROBIO.2014.7090525
22.
Terada
,
H.
,
Zhu
,
Y.
,
Horiguchi
,
K.
,
Nakamura
,
M.
, and
Takahashi
,
R.
,
2012
, “
Development of a Wearable Assist Robot for Walk Rehabilitation After Knee Arthroplasty Surgery
,”
Advances in Mechanisms Design
,
Springer
, The
Netherlands
, Vol.
8
, pp.
65
71
.10.1007/978-94-007-5125-5_9
23.
Wang
,
A.
,
Lee
,
K. M.
,
Guo
,
J.
, and
Yang
,
C. J.
,
2014
, “
Adaptive Knee Joint Exoskeleton Based on Biological Geometries
,”
IEEE ASME Trans. Mechatron.
,
19
(
4
), pp.
1268
1278
.10.1109/TMECH.2013.2278207
24.
Sarkisian
,
S. V.
,
Ishmael
,
M. K.
, and
Lenzi
,
T.
,
2021
, “
Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
29
, pp.
629
640
.10.1109/TNSRE.2021.3064463
25.
Lee
,
Y.
,
Lee
,
J.
,
Choi
,
B.
,
Lee
,
M.
,
Roh
,
S.-G.
,
Kim
,
K.
,
Seo
,
K.
,
Kim
,
Y.-J.
, and
Shim
,
Y.
,
2019
, “
Flexible Gait Enhancing Mechatronics System for Lower Limb Assistance (GEMS L-Type)
,”
IEEE ASME Trans. Mechatron.
,
24
(
4
), pp.
1520
1531
.10.1109/TMECH.2019.2922977
26.
Choi
,
B.
,
Lee
,
Y.
,
Kim
,
J.
,
Lee
,
M.
, and
Choi
,
J. Y.
,
2016
, “
A Self-Aligning Knee Joint for Walking Assistance Devices
,” 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Orlando, FL, Aug. 16–20, pp.
2222
2227
.10.1109/EMBC.2016.7591171
27.
Choi
,
B.
,
Lee
,
Y.
,
Lee
,
J.
,
Lee
,
M.
, and
Shim
,
Y.
,
2019
, “
Development of Adjustable Knee Assist Device for Wearable Robot Based on Linkage and Rolling Joint
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Macau, China, Nov. 3–8, pp.
4043
4050
.10.1109/IROS40897.2019.8967826
28.
Sun
,
Y.
,
Ge
,
W.
,
Zheng
,
J.
, and
Dong
,
D.
,
2015
, “
Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
23
(
6
), pp.
1031
1038
.10.1109/TNSRE.2015.2401042
29.
Kim
,
T.
,
Jeong
,
M.
, and
Kong
,
K.
,
2022
, “
Bio-Inspired Knee Joint of a Lower-Limb Exoskeleton for Misalignment Reduction
,”
IEEE ASME Trans. Mechatron.
,
27
(
3
), pp.
1223
1232
.10.1109/TMECH.2021.3099815
30.
Conconi
,
M.
,
Sancisi
,
N.
, and
Castelli
,
V. P.
,
2021
, “
Prediction of Individual Knee Kinematics From an MRI Representation of the Articular Surfaces
,”
IEEE. Trans. Biomed. Eng.
,
68
(
3
), pp.
1084
1092
.10.1109/TBME.2020.3018113
31.
Deng
,
Y.
, and
Liu
,
J.
,
2014
, “
Flexible Mechanical Joint as Human Exoskeleton Using Low-Melting-Point Alloy
,”
ASME J. Med. Devices
,
8
(
4
), p.
044506
.10.1115/1.4028307
32.
Bertomeu
,
J. M. B.
,
Lois
,
J. M. B.
,
Guillem
,
R. B.
,
Pozo
,
L. P. D.
,
Lacuesta
,
J.
,
Mollà
,
C. G.
,
Luna
,
P. V.
, and
Pastor
,
J. P.
,
2007
, “
Development of a Hinge Compatible With the Kinematics of the Knee Joint
,”
Prosthet. Orthot. Int.
,
31
(
4
), pp.
371
383
.10.1080/03093640601095842
33.
Olinski
,
M.
,
Gronowicz
,
A.
, and
Ceccarelli
,
M.
,
2021
, “
Development and Characterisation of a Controllable Adjustable Knee Joint Mechanism
,”
Mech Mach Theory
,
155
(
2021
), p.
104101
.10.1016/j.mechmachtheory.2020.104101
34.
Olinski
,
M.
,
Gronowicz
,
A.
,
Handke
,
A.
, and
Ceccarelli
,
M.
,
2016
, “
Design and Characterization of a Novel Knee Articulation Mechanism
,”
Int. J. Appl. Mech.
,
21
(
3
), pp.
611
622
.10.1515/ijame-2016-0037
35.
Cai
,
D.
,
Bidaud
,
P.
,
Hayward
,
V.
, and
Gosselin
,
F.
,
2009
, “
Design of Self-Adjusting Orthoses for Rehabilitation
,”
Proceedings of IASTED International Conference on Robotics & Applications
, Cambridge, MA, Nov. 2–4, pp.
215
223
.https://www.researchgate.net/publication/229014218_Design_of_Self-Adjusting_Orthoses_for_Rehabilitation
36.
Kim
,
J.-H.
,
Shim
,
M.
,
Ahn
,
D.-H.
,
Son
,
B. J.
,
Kim
,
S.-Y.
,
Kim
,
D. Y.
,
Baek
,
Y. S.
, and
Cho
,
B.-K.
,
2015
, “
Design of a Knee Exoskeleton Using Foot Pressure and Knee Torque Sensors
,”
Int. J. Adv. Robot. Syst.
,
12
(
8
), p. 112.10.5772/60782
37.
Meijneke
,
C.
,
van Oort
,
G.
,
Sluiter
,
V.
,
van Asseldonk
,
E.
,
Tagliamonte
,
N. L.
,
Tamburella
,
F.
,
Pisotta
,
I.
,
Masciullo
,
M.
,
Arquilla
,
M.
,
Molinari
,
M.
,
Wu
,
A. R.
,
Dzeladini
,
F.
,
Ijspeert
,
A. J.
, and
van der Kooij
,
H.
,
2021
, “
Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
29
, pp.
330
339
.10.1109/TNSRE.2021.3049960
38.
Kordasz
,
M.
, and
Sauer
,
P.
,
2013
, “
Automatic Determination of Knee Kinematics for Lower Limb Rehabilitation Manipulator Design
,” Ninth International Workshop on Robot Motion and Control (
RoMoCo
),
Wasowo, Poland
, July 3–5, pp.
86
91
.10.1109/RoMoCo.2013.6614589
39.
Leardini
,
A.
,
Belvedere
,
C.
,
Nardini
,
F.
,
Sancisi
,
N.
,
Conconi
,
M.
, and
Parenti-Castelli
,
V.
,
2017
, “
Kinematic Models of Lower Limb Joints for Musculo-Skeletal Modelling and Optimization in Gait Analysis
,”
J. Biomech.
,
62
, pp.
77
86
.10.1016/j.jbiomech.2017.04.029
40.
Camomilla
,
V.
,
Dumas
,
R.
, and
Cappozzo
,
A.
,
2017
, “
Human Movement Analysis: The Soft Tissue Artefact Issue
,”
J. Biomech.
,
62
, pp.
1
4
.10.1016/j.jbiomech.2017.09.001
41.
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A. R.
,
2000
, “
Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee
,”
Bone Jt. J.
,
82
(
8
), pp.
1189
1195
.10.1302/0301-620X.82B8.0821189
42.
Patel
,
V. V.
,
Hall
,
K.
,
Ries
,
M.
,
Lotz
,
J.
,
Ozhinsky
,
E.
,
Lindsey
,
C.
,
Ying
,
L.
, and
Majumdar
,
S.
,
2004
, “
A Three-Dimensional MRI Analysis of Knee Kinematics
,”
J. Orthop. Res.
,
22
(
2
), pp.
283
292
.10.1016/j.orthres.2003.08.015
43.
Bergmann
,
J. H. M.
,
Anastasova-Ivanova
,
S.
,
Spulber
,
I.
,
Gulati
,
V.
,
Georgiou
,
P.
, and
McGregor
,
A.
,
2013
, “
An Attachable Clothing Sensor System for Measuring Knee Joint Angles
,”
IEEE Sens. J.
,
13
(
10
), pp.
4090
4097
.10.1109/JSEN.2013.2277697
44.
Teague
,
C. N.
,
Hersek
,
S.
,
Toreyin
,
H.
,
Millard-Stafford
,
M. L.
,
Jones
,
M. L.
,
Kogler
,
G. F.
,
Sawka
,
M. N.
, and
Inan
,
O. T.
,
2016
, “
Novel Methods for Sensing Acoustical Emissions From the Knee for Wearable Joint Health Assessment
,”
IEEE. Trans. Biomed. Eng.
,
63
(
8
), pp.
1581
1590
.10.1109/TBME.2016.2543226
45.
Inan
,
O. T.
,
Whittingslow
,
D. C.
,
Teague
,
C. N.
,
Hersek
,
S.
,
Pouyan
,
M. B.
,
Millard-Stafford
,
M.
,
Kogler
,
G. F.
, and
Sawka
,
M. N.
,
2018
, “
Wearable Knee Health System Employing Novel Physiological Biomarkers
,”
J. Appl. Phycol.
,
124
(
3
), pp.
537
547
.10.1152/japplphysiol.00366.2017
46.
Kun
,
L.
,
Inoue
,
Y.
,
Shibata
,
K.
, and
Enguo
,
C.
,
2011
, “
Ambulatory Estimation of Knee-Joint Kinematics in Anatomical Coordinate System Using Accelerometers and Magnetometers
,”
IEEE Trans. Biomed. Eng.
,
58
(
2
), pp.
435
442
.10.1109/TBME.2010.2089454
47.
Oubre
,
B.
,
Daneault
,
J.-F.
,
Boyer
,
K.
,
Kim
,
J. H.
,
Jasim
,
M.
,
Bonato
,
P.
, and
Lee
,
S. I.
,
2020
, “
A Simple Low-Cost Wearable Sensor for Long-Term Ambulatory Monitoring of Knee Joint Kinematics
,”
IEEE. Trans. Biomed. Eng.
,
67
(
12
), pp.
3483
3490
.10.1109/TBME.2020.2988438
48.
Xie
,
H.
,
Wang
,
S.
, and
Li
,
F.
,
2014
, “
Knee Joint Optimization Design of Intelligent Bionic Leg Based on Genetic Algorithm
,”
Int. J. Bioautomation
,
18
, pp.
195
206
.https://www.researchgate.net/publication/289641449
49.
Strydom
,
M. L.
,
Banach
,
A.
,
Roberts
,
J.
,
Crawford
,
R.
, and
Jaiprakash
,
A. T.
,
2020
, “
Kinematic Model of the Human Leg Using DH Parameters
,”
IEEE Access
,
8
, pp.
191737
191750
.10.1109/ACCESS.2020.3031295
50.
Kurosawa
,
H.
,
Walker
,
P. S.
,
Abe
,
S.
,
Garg
,
A.
, and
Hunter
,
T.
,
1985
, “
Geometry and Motion of the Knee for Implant and Orthotic Design
,”
J. Biomech.
,
18
(
7
), pp.
487
499
.10.1016/0021-9290(85)90663-3
51.
Walker
,
P. S.
,
Kurosawa
,
H.
,
Rovick
,
J. S.
, and
Zimmerman
,
R. A.
,
1985
, “
External Knee Joint Design Based on Normal Motion
,”
J. Rehabil. Res. Dev.
,
22
(
1
), pp.
9
22
.10.1682/JRRD.1985.01.0009
52.
Tucker
,
M. R.
,
Moser
,
A.
,
Lambercy
,
O.
,
Sulzer
,
J.
, and
Gassert
,
R.
,
2013
, “
Design of a Wearable Perturbator for Human Knee Impedance Estimation During Gait
,”
IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
, Seattle, WA, June 24–26, pp.
1
6
.10.1109/ICORR.2013.6650372
You do not currently have access to this content.