Abstract

In this article, we present the design, validation, and imaging capabilities of a mechanically discretized ultrasound scanning apparatus (MEDUSA) that supports flexible development of ultrasound tomography (UST) algorithms for complex tissue structures. Ultrasound tomography in the recent decade has shown promising results in quantitative soft-tissue imaging for clinical breast cancer diagnostics. There is growing interest in applying tomographic techniques to image broader tissue structures that include bone, where imaging is significantly more challenging due to strong impedance mismatches and complex wave propagation within the region. Changes in data acquisition strategy, algorithms, and system design are necessary to enable quantitative imaging of soft-tissue with bone inclusions. The 36 degree-of-freedom (DOF) MEDUSA system allows free space positioning of acoustic transducers around an imaging target and enables investigation of imaging strategies not available in other UST systems. We present the mechanical design, parameter calibration, and tomographic imaging results using MEDUSA. Mono-/bistatic imaging and full-waveform inversion (FWI) results on real targets are presented and validates system performance capabilities for broader UST algorithm development for more complex tissue structures.

References

1.
Duric
,
N.
,
Littrup
,
P.
,
Poulo
,
L.
,
Babkin
,
A.
,
Pevzner
,
R.
,
Holsapple
,
E.
,
Rama
,
O.
, and
Glide
,
C.
,
2007
, “
Detection of Breast Cancer With Ultrasound Tomography: First Results With the Computed Ultrasound Risk Evaluation (Cure) Prototype
,”
Med. Phys.
,
34
(
2
), pp.
773
785
.10.1118/1.2432161
2.
Ranger
,
B.
,
Littrup
,
P.
,
Duric
,
N.
,
Li
,
C.
,
Schmidt
,
S.
,
Lupinacci
,
J.
,
Myc
,
L.
,
Szczepanski
,
A.
,
Rama
,
O.
, and
Bey-Knight
,
L.
,
2010
, “
Breast Imaging With Ultrasound Tomography: A Comparative Study With MRI
,”
Proc. SPIE
,
7629
, p.
762906
.10.1117/12.845650
3.
Waag
,
R. C.
, and
Fedewa
,
R. J.
,
2006
, “
A Ring Transducer System for Medical Ultrasound Research
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
53
(
10
), pp.
1707
1718
.10.1109/TUFFC.2006.104
4.
Hopp
,
T.
,
Šroba
,
L.
,
Zapf
,
M.
,
Dapp
,
R.
,
Kretzek
,
E.
,
Gemmeke
,
H.
, and
Ruiter
,
N. V.
,
2014
, “
Breast Imaging With 3D Ultrasound Computer Tomography: Results of a First In-Vivo Study in Comparison to MRI Images
,” 12th International Workshop on Breast Imaging (
IWDM 2014
), Gifu City, Japan, June
29–
July 2, pp.
72
79
.10.1007/978-3-319-07887-8_11
5.
Ruiter
,
N. V.
,
Zapf
,
M.
,
Hopp
,
T.
, and
Gemmeke
,
H.
,
2013
, “
Experimental Evaluation of Noise Generated by Grating Lobes for a Sparse 3D Ultrasound Computer Tomography System
,”
Proc. SPIE
,
8675
, p.
86750N
.10.1117/12.2008197
6.
Zhang
,
X.
,
Fincke
,
J. R.
, and
Anthony
,
B. W.
,
2016
, “
Single Element Ultrasonic Imaging of Limb Geometry: An In-Vivo Study With Comparison to MRI
,”
Proc. SPIE
,
9790
, p.
97901R
.10.1117/12.2216542
7.
Huang
,
Q. H.
,
Zheng
,
Y. P.
,
Lu
,
M. H.
, and
Chi
,
Z. R.
,
2005
, “
Development of a Portable 3D Ultrasound Imaging System for Musculoskeletal Tissues
,”
Ultrasonics
,
43
(
3
), pp.
153
163
.10.1016/j.ultras.2004.05.003
8.
He
,
L.
,
Delzell
,
P.
, and
Schils
,
J.
,
2018
, “
Comparison of MRI Findings After Musculoskeletal Ultrasound: An Opportunity to Reduce Redundant Imaging
,”
J. Am. Coll. Radiol.
,
15
(
8
), pp.
1116
1119
.10.1016/j.jacr.2018.03.026
9.
Ely
,
G.
,
Malcolm
,
A.
, and
Renaud
,
G.
,
2018
, “
Suppression of Internal Multiples With a Group Sparse Radon Transform for Imaging the Interior of Bone
,”
SEG Technical Program Expanded Abstracts 2018
, Anaheim, CA, Oct. 16,
pp.
4807
4811
.http://www.mit.edu/~elyg/papers/seg_2018_bone.pdf
10.
Renaud
,
G.
,
Kruizinga
,
P.
,
Cassereau
,
D.
, and
Laugier
,
P.
,
2018
, “
In Vivo Ultrasound Imaging of the Bone Cortex
,”
Phys. Med. Biol.
,
63
(
12
), p.
125010
.10.1088/1361-6560/aac784
11.
Laugier
,
P.
,
Fournier
,
B.
, and
Berger
,
G.
,
1996
, “
Ultrasound Parametric Imaging of the Calcaneus: In Vivo Results With a New Device
,”
Calcif. Tissue Int.
,
58
(
5
), pp.
326
331
.10.1007/s002239900053
12.
Laugier
,
P.
,
Haiat
,
G.
, and
Haïat
,
G.
,
2011
,
Bone Quantitative Ultrasound
,
Springer
, Berlin.
13.
Laugier
,
P.
,
2008
, “
Bones in the Light of Ultrasound
,”
Acoustics' 08 Paris
, Acoustic Society of America, Melville, NY, pp.
1
7
.
14.
Douglas
,
T.
,
Solomonidis
,
S.
,
Sandham
,
W.
, and
Spence
,
W.
,
2002
, “
Ultrasound Imaging in Lower Limb Prosthetics
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
10
(
1
), pp.
11
21
.10.1109/TNSRE.2002.1021582
15.
Ranger
,
B. J.
,
2018
, “
Ultrasonic Imaging Methods for Quantitative Musculoskeletal Tissue Assessment and Improved Prosthetic Interface Design
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
16.
Langton
,
C.
,
Palmer
,
S.
, and
Porter
,
R.
,
1984
, “
The Measurement of Broadband Ultrasonic Attenuation in Cancellous Bone
,”
Eng. Med.
,
13
(
2
), pp.
89
91
.10.1243/EMED_JOUR_1984_013_022_02
17.
Gluer
,
C. C.
,
Wu
,
C. Y.
,
Jergas
,
M.
,
Goldstein
,
S. A.
, and
Genant
,
H. K.
,
1994
, “
Three Quantitative Ultrasound Parameters Reflect Bone Structure
,”
Calcif. Tissue Int.
,
55
(
1
), pp.
46
52
.10.1007/BF00310168
18.
Grimal
,
Q.
,
Grondin
,
J.
,
Guerard
,
S.
,
Barkmann
,
R.
,
Engelke
,
K.
,
Gluer
,
C. C.
, and
Laugier
,
P.
,
2013
, “
Quantitative Ultrasound of Cortical Bone in the Femoral Neck Predicts Femur Strength: Results of a Pilot Study
,”
J. Bone Miner. Res.
,
28
(
2
), pp.
302
312
.10.1002/jbmr.1742
19.
Enright
,
P. L.
,
2003
, “
The Six-Minute Walk Test
,”
Respir. Care
,
48
(
8
), pp.
783
785
.https://rc.rcjournal.com/content/48/8/783/tab-article-info
20.
Pillen
,
S.
,
Arts
,
I. M. P.
, and
Zwarts
,
M. J.
,
2008
, “
Muscle Ultrasound in Neuromuscular Disorders
,”
Muscle Nerve
,
37
(
6
), pp.
679
693
.10.1002/mus.21015
21.
Virieux
,
J.
, and
Operto
,
S.
,
2009
, “
An Overview of Full-Waveform Inversion in Exploration Geophysics
,”
Geophysics
,
74
(
6
), pp.
WCC1
WCC26
.10.1190/1.3238367
22.
Fincke
,
J.
,
Zhang
,
X.
,
Shin
,
B.
,
Ely
,
G.
, and
Anthony
,
B. W.
,
2022
, “
Quantitative Sound Speed Imaging of Cortical Bone and Soft Tissue: Results From Observational Data Sets
,”
IEEE Trans. Med. Imaging
,
41
(
3
), pp.
502
514
.10.1109/TMI.2021.3115790
23.
Djikpesse
,
H. A.
,
Khodja
,
M. R.
,
Prange
,
M. D.
,
Duchenne
,
S.
, and
Menkiti
,
H.
,
2012
, “
Bayesian Survey Design to Optimize Resolution in Waveform Inversion
,”
Geophysics
,
77
(
2
), pp.
R81
R93
.10.1190/geo2011-0143.1
24.
Maurer
,
H.
,
Curtis
,
A.
, and
Boerner
,
D. E.
,
2010
, “
Recent Advances in Optimized Geophysical Survey Design
,”
Geophysics
,
75
(
5
), pp.
75A177
75A194
.10.1190/1.3484194
25.
Ely
,
G.
,
Fincke
,
J.
,
Zhang
,
X.
, and
Anthony
,
B. W.
,
2020
, “
Optimizing Transducer Acquisition Scheme for Rapid Ultrasound Tomography of Limbs
,” 2020 IEEE International Ultrasonics Symposium (
IUS
), Las Vegas, NV, Sept. 7–11,
pp.
1
4
.10.1109/IUS46767.2020.9251425
26.
Wang
,
C.
,
Li
,
X.
,
Hu
,
H.
,
Zhang
,
L.
,
Huang
,
Z.
,
Lin
,
M.
,
Zhang
,
Z.
, et al.,
2018
, “
Monitoring of the Central Blood Pressure Waveform Via a Conformal Ultrasonic Device
,”
Nat. Biomed. Eng.
,
2
(
9
), pp.
687
695
.10.1038/s41551-018-0287-x
27.
Zhang
,
X.
,
Fincke
,
J. R.
,
Wynn
,
C. M.
,
Johnson
,
M. R.
,
Haupt
,
R. W.
, and
Anthony
,
B. W.
,
2019
, “
Full Noncontact Laser Ultrasound: First Human Data
,”
Light: Sci. Appl.
,
8
(
1
), p.
119
.10.1038/s41377-019-0229-8
28.
Jennifer
,
B.
,
2014
, “Human Integration Design Processes,” NASA, Houston, TX, Report No. NASA/TP-2014-218556.
29.
Siciliano
,
B.
,
2009
,
Robotics: Modelling, Planning and Control
,
Springer
, Berlin.
30.
Li
,
C.
,
Huang
,
L.
,
Duric
,
N.
,
Zhang
,
H.
, and
Rowe
,
C.
,
2009
, “
An Improved Automatic Time-of-Flight Picker for Medical Ultrasound Tomography
,”
Ultrasonics
,
49
(
1
), pp.
61
72
.10.1016/j.ultras.2008.05.005
31.
Michalewicz
,
Z.
, and
Fogel
,
D. B.
,
2013
,
How to Solve It: Modern Heuristics
,
Springer Science and Business Media
, Berlin.
32.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
33.
Hasegawa
,
H.
,
2017
, “
Apodized Adaptive Beamformer
,”
J. Med. Ultrason.
,
44
(
2
), pp.
155
165
.10.1007/s10396-016-0764-3
34.
Li
,
P.-C.
, and
Li
,
M.-L.
,
2003
, “
Adaptive Imaging Using the Generalized Coherence Factor
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
50
(
2
), pp.
128
141
.10.1109/TUFFC.2003.1182117
35.
Fincke
,
J. R.
,
Feigin
,
M.
,
Prieto
,
G. A.
,
Zhang
,
X.
, and
Anthony
,
B.
,
2016
, “
Towards Ultrasound Travel Time Tomography for Quantifying Human Limb Geometry and Material Properties
,”
Proc. SPIE
,
9790
, p.
97901S
.10.1117/12.2218387
You do not currently have access to this content.