Abstract

Reverse shoulder arthroplasty (RSA) is used to treat patients with cuff tear arthropathy. Loosening remains to be one of the principal modes of implant failure and the main complication leading to revision. Excess micromotion contributes to glenoid loosening. This study sought to determine the predictive accuracy of an experimental system designed to assess factors contributing to RSA glenoid baseplate micromotion. A half-fractional factorial experiment was designed to assess 4 factors: central element type (screw versus peg), central element length (13.5 versus 23.5 mm), anterior-posterior peripheral screw type (locking versus nonlocking) and cancellous bone density (10 versus 25 pounds per cubic foot (pcf)). Four linear variable differential transducers (LVDTs) recorded micromotion from a stainless-steel disk surrounding a modified glenosphere. The displacements were used to interpolate micromotion at each peripheral screw position. The mean absolute percentage error (MAPE) was used to determine the predictive accuracy and error range of the system. The MAPE for each condition ranged from 6.8% to 12.9% for an overall MAPE of (9.5 ± 0.9)%. The system had an error range of 2.7 μm to 20.1 μm, which was lower than those reported by prior studies using optical systems. One of the eight conditions had micromotion that exceeded 150 μm. These findings support the use of displacement transducers, specifically LVDTs, as an accurate system for determining RSA baseplate micromotion in rigid polyurethane foam bone surrogates.

References

1.
Chebli
,
C.
,
Huber
,
P.
,
Watling
,
J.
,
Bertelsen
,
A.
,
Bicknell
,
T.
, and
Matsen
,
F.
, 3rd.
,
2008
, “
Factors Affecting Fixation of the Glenoid Component of a Reverse Total Shoulder Prothesis
,”
J. Shoulder Elbow Surg.
,
17
(
2
), pp.
323
327
.10.1016/j.jse.2007.07.015
2.
DiStefano
,
J. G.
,
Park
,
A. Y.
,
Nguyen
,
T. Q.
,
Diederichs
,
G.
,
Buckley
,
J. M.
, and
Montgomery
,
W. H.
, 3rd.
,
2011
, “
Optimal Screw Placement for Base Plate Fixation in Reverse Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
20
(
3
), pp.
467
–4
76
.10.1016/j.jse.2010.06.001
3.
Humphrey
,
C. S.
,
Kelly
,
J. D.
, 2nd.
, and
Norris
,
T. R.
,
2008
, “
Optimizing Glenosphere Position and Fixation in Reverse Shoulder Arthroplasty, Part Two: The Three-Column Concept
,”
J. Shoulder Elbow Surg.
,
17
(
4
), pp.
595
601
.10.1016/j.jse.2008.05.038
4.
James
,
J.
,
Allison
,
M. A.
,
Werner
,
F. W.
,
McBride
,
D. E.
,
Basu
,
N. N.
,
Sutton
,
L. G.
, and
Nanavati
,
V. N.
,
2013
, “
Reverse Shoulder Arthroplasty Glenoid Fixation: Is There a Benefit in Using Four Instead of Two Screws?
,”
J. Shoulder Elbow Surg.
,
22
(
8
), pp.
1030
1036
.10.1016/j.jse.2012.11.006
5.
Stephens
,
B. F.
,
Hebert
,
C. T.
,
Azar
,
F. M.
,
Mihalko
,
W. M.
, and
Throckmorton
,
T. W.
,
2015
, “
Optimal Baseplate Rotational Alignment for Locking-Screw Fixation in Reverse Total Shoulder Arthroplasty: A Three-Dimensional Computer-Aided Design Study
,”
J. Shoulder Elbow Surg.
,
24
(
9
), pp.
1367
1371
.10.1016/j.jse.2015.01.012
6.
Ackland
,
D. C.
,
Patel
,
M.
, and
Knox
,
D.
,
2015
, “
Prosthesis Design and Placement in Reverse Total Shoulder Arthroplasty
,”
J. Orthop. Surg. Res.
,
10
(
1
), p.
101
.10.1186/s13018-015-0244-2
7.
Jarrett
,
C. D.
,
Brown
,
B. T.
, and
Schmidt
,
C. C.
,
2013
, “
Reverse Shoulder Arthroplasty
,”
Orthop. Clin. North Am.
,
44
(
3
), pp.
389
408
.10.1016/j.ocl.2013.03.010
8.
Nam
,
D.
,
Kepler
,
C. K.
,
Neviaser
,
A. S.
,
Jones
,
K. J.
,
Wright
,
T. M.
,
Craig
,
E. V.
, and
Warren
,
R. F.
,
2010
, “
Reverse Total Shoulder Arthroplasty: Current Concepts, Results, and Component Wear Analysis
,”
J. Bone Jt. Surg. Am.
,
92
(
Suppl_2
), pp.
23
35
.10.2106/JBJS.J.00769
9.
Affonso
,
J.
,
Nicholson
,
G. P.
,
Frankle
,
M. A.
,
Walch
,
G.
,
Gerber
,
C.
,
Garzon-Muvdi
,
J.
, and
McFarland
,
E. G.
,
2012
, “
Complications of the Reverse Prosthesis: Prevention and Treatment
,”
Instr. Course Lect.
,
61
, pp.
157
–1
68
.https://pubmed.ncbi.nlm.nih.gov/22301230/#:~:text=Complications%20include%20those%20common%20to,%2C%20and%20scapular%20stress%20fractures
10.
Stroud
,
N. J.
,
DiPaola
,
M. J.
,
Martin
,
B. L.
,
Steiler
,
C. A.
,
Flurin
,
P.-H.
,
Wright
,
T. W.
,
Zuckerman
,
J. D.
, and
Roche
,
C. P.
,
2013
, “
Initial Glenoid Fixation Using Two Different Reverse Shoulder Designs With an Equivalent Center of Rotation in a Low-Density and High-Density Bone Substitute
,”
J. Shoulder Elbow Surg.
,
22
(
11
), pp.
1573
1579
.10.1016/j.jse.2013.01.037
11.
Zumstein
,
M. A.
,
Pinedo
,
M.
,
Old
,
J.
, and
Boileau
,
P.
,
2011
, “
Problems, Complications, Reoperations, and Revisions in Reverse Total Shoulder Arthroplasty: A Systematic Review
,”
J. Shoulder Elbow Surg.
,
20
(
1
), pp.
146
157
.10.1016/j.jse.2010.08.001
12.
Critchley
,
O.
,
McLean
,
A.
,
Page
,
R.
,
Taylor
,
F.
,
Graves
,
S.
,
Lorimer
,
M.
,
Peng
,
Y.
,
Hatton
,
A.
, and
Bain
,
G.
,
2020
, “
Reverse Total Shoulder Arthroplasty Compared to Stemmed Hemiarthroplasty for Proximal Humeral Fractures: A Registry Analysis of 5946 Patients
,”
J. Shoulder Elbow Surg.
,
29
(
12
), pp.
2538
2547
.10.1016/j.jse.2020.04.005
13.
Hopkins
,
A. R.
,
Hansen
,
U. N.
,
Bull
,
A. M.
,
Emery
,
R.
, and
Amis
,
A. A.
,
2008
, “
Fixation of the Reversed Shoulder Prosthesis
,”
J. Shoulder Elbow Surg.
,
17
(
6
), pp.
974
980
.10.1016/j.jse.2008.04.012
14.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
,
1986
, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
, 208, pp.
108
113
.https://pubmed.ncbi.nlm.nih.gov/3720113/
15.
Szmukler-Moncler
,
S.
,
Salama
,
H.
,
Reingewirtz
,
Y.
, and
Dubruille
,
J. H.
,
1998
, “
Timing of Loading and Effect of Micromotion on Bone-Dental Implant Interface: Review of Experimental Literature
,”
J. Biomed. Mater. Res.
,
43
(
2
), pp.
192
203
.10.1002/(SICI)1097-4636(199822)43:2<192::AID-JBM14>3.0.CO;2-K
16.
Virani
,
N. A.
,
Harman
,
M.
,
Li
,
K.
,
Levy
,
J.
,
Pupello
,
D. R.
, and
Frankle
,
M. A.
,
2008
, “
In Vitro and Finite Element Analysis of Glenoid Bone/Baseplate Interaction in the Reverse Shoulder Design
,”
J. Shoulder Elbow Surg.
,
17
(
3
), pp.
509
521
.10.1016/j.jse.2007.11.003
17.
Zhang
,
M.
,
Junaid
,
S.
,
Gregory
,
T.
,
Hansen
,
U.
, and
Cheng
,
C. K.
,
2019
, “
Effect of Baseplate Positioning on Fixation of Reverse Total Shoulder Arthroplasty
,”
Clin. Biomech. (Bristol, Avon)
,
62
, pp.
15
22
.10.1016/j.clinbiomech.2018.12.021
18.
Hast
,
M. W.
,
Chin
,
M.
,
Schmidt
,
E. C.
, and
Kuntz
,
A. F.
,
2020
, “
Corrigendum to ‘Central Screw Use Delays Implant Dislodgement in Osteopenic Bone but Not Synthetic Surrogates: A Comparison of Reverse Total Shoulder Models’ [J. Biomech. 93 (2019) 11-17]
,”
J. Biomech.
,
101
, p.
109628
.10.1016/j.jbiomech.2020.109628
19.
Chae
,
S. W.
,
Lee
,
H.
,
Kim
,
S. M.
,
Lee
,
J.
,
Han
,
S. H.
, and
Kim
,
S. Y.
,
2016
, “
Primary Stability of Inferior Tilt Fixation of the Glenoid Component in Reverse Total Shoulder Arthroplasty: A Finite Element Study
,”
J. Orthop. Res.
,
34
(
6
), pp.
1061
1068
.10.1002/jor.23115
20.
Zhang
,
M.
,
Junaid
,
S.
,
Gregory
,
T.
,
Hansen
,
U.
, and
Cheng
,
C. K.
,
2020
, “
Impact of Scapular Notching on Glenoid Fixation in Reverse Total Shoulder Arthroplasty: An In Vitro and Finite Element Study
,”
J. Shoulder Elbow Surg.
,
29
(
10
), pp.
1981
1991
.10.1016/j.jse.2020.01.087
21.
Abdic
,
S.
,
Lockhart
,
J.
,
Alnusif
,
N.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2021
, “
Glenoid Baseplate Screw Fixation in Reverse Shoulder Arthroplasty: Does Locking Screw Position and Orientation Matter?
,”
J. Shoulder Elbow Surg.
,
30
(
5
), pp.
1207
1213
.10.1016/j.jse.2020.08.009
22.
Lung
,
T. S.
,
Cruickshank
,
D.
,
Grant
,
H. J.
,
Rainbow
,
M. J.
,
Bryant
,
T. J.
, and
Bicknell
,
R. T.
,
2019
, “
Factors Contributing to Glenoid Baseplate Micromotion in Reverse Shoulder Arthroplasty: A Biomechanical Study
,”
J. Shoulder Elbow Surg.
,
28
(
4
), pp.
648
653
.10.1016/j.jse.2018.09.012
23.
Roche
,
C.
,
DiGeorgio
,
C.
,
Yegres
,
J.
,
VanDeven
,
J.
,
Stroud
,
N.
,
Flurin
,
P.-H.
,
Wright
,
T.
,
Cheung
,
E.
, and
Zuckerman
,
J. D.
,
2019
, “
Impact of Screw Length and Screw Quantity on Reverse Total Shoulder Arthroplasty Glenoid Fixation for 2 Different Sizes of Glenoid Baseplates
,”
JSES Open Access
,
3
(
4
), pp.
296
303
.10.1016/j.jses.2019.08.006
24.
Harman
,
M.
,
Frankle
,
M.
,
Vasey
,
M.
, and
Banks
,
S.
,
2005
, “
Initial Glenoid Component Fixation in ‘Reverse’ Total Shoulder Arthroplasty: A Biomechanical Evaluation
,”
J. Shoulder Elbow Surg.
,
14
(
1 Suppl S
), pp.
162S
167S
.10.1016/j.jse.2004.09.030
25.
Formaini
,
N. T.
,
Everding
,
N. G.
,
Levy
,
J. C.
,
Santoni
,
B. G.
,
Nayak
,
A. N.
, and
Wilson
,
C.
,
2017
, “
Glenoid Baseplate Fixation Using Hybrid Configurations of Locked and Unlocked Peripheral Screws
,”
J. Orthop. Traumatol.
,
18
(
3
), pp.
221
228
.10.1007/s10195-016-0438-3
26.
Codsi
,
M. J.
, and
Iannotti
,
J. P.
,
2008
, “
The Effect of Screw Position on the Initial Fixation of a Reverse Total Shoulder Prosthesis in a Glenoid With a Cavitary Bone Defect
,”
J. Shoulder Elbow Surg.
,
17
(
3
), pp.
479
486
.10.1016/j.jse.2007.09.002
27.
Formaini
,
N. T.
,
Everding
,
N. G.
,
Levy
,
J. C.
,
Santoni
,
B. G.
,
Nayak
,
A. N.
,
Wilson
,
C.
, and
Cabezas
,
A. F.
,
2015
, “
The Effect of Glenoid Bone Loss on Reverse Shoulder Arthroplasty Baseplate Fixation
,”
J. Shoulder Elbow Surg.
,
24
(
11
), pp.
e312
e319
.10.1016/j.jse.2015.05.045
28.
Gutierrez
,
S.
,
Greiwe
,
R. M.
,
Frankle
,
M. A.
,
Siegal
,
S.
, and
Lee
,
W. E.
, 3rd.
,
2007
, “
Biomechanical Comparison of Component Position and Hardware Failure in the Reverse Shoulder Prosthesis
,”
J. Shoulder Elbow Surg.
,
16
(
3
), pp.
S9
S12
.10.1016/j.jse.2005.11.008
29.
Hoenig
,
M. P.
,
Loeffler
,
B.
,
Brown
,
S.
,
Peindl
,
R.
,
Fleischli
,
J.
,
Connor
,
P.
, and
D'Alessandro
,
D.
,
2010
, “
Reverse Glenoid Component Fixation: Is a Posterior Screw Necessary?
,”
J. Shoulder Elbow Surg.
,
19
(
4
), pp.
544
549
.10.1016/j.jse.2009.10.006
30.
Irlenbusch
,
U.
, and
Kohut
,
G.
,
2015
, “
Evaluation of a New Baseplate in Reverse Total Shoulder Arthroplasty - Comparison of Biomechanical Testing of Stability With Roentgenological Follow Up Criteria
,”
Orthop. Traumatol. Surg. Res.
,
101
(
2
), pp.
185
190
.10.1016/j.otsr.2014.11.015
31.
Maletsky
,
L. P.
,
Sun
,
J.
, and
Morton
,
N. A.
,
2007
, “
Accuracy of an Optical Active-Marker System to Track the Relative Motion of Rigid Bodies
,”
J. Biomech.
,
40
(
3
), pp.
682
685
.10.1016/j.jbiomech.2006.01.017
32.
Favre
,
P.
,
Perala
,
S.
,
Vogel
,
P.
,
Fucentese
,
S. F.
,
Goff
,
J. R.
,
Gerber
,
C.
, and
Snedeker
,
J. G.
,
2011
, “
In Vitro Assessments of Reverse Glenoid Stability Using Displacement Gages Are Misleading - Recommendations for Accurate Measurements of Interface Micromotion
,”
Clin. Biomech. (Bristol, Avon)
,
26
(
9
), pp.
917
922
.10.1016/j.clinbiomech.2011.05.002
33.
Gopfert
,
B.
,
Krol
,
Z.
,
Freslier
,
M.
, and
Krieg
,
A. H.
,
2011
, “
3D Video-Based Deformation Measurement of the Pelvis Bone Under Dynamic Cyclic Loading
,”
Biomed. Eng. Online
,
10
(
1
), p.
60
.10.1186/1475-925X-10-60
34.
Schmidt
,
J. B.
,
Berg
,
D. R.
,
Ploeg
,
H.-L.
, and
Ploeg
,
L.
,
2009
, “
Precision, Repeatability and Accuracy of Optotrak® Optical Motion Tracking Systems
,”
Int. J. Exp. Comput. Biomech.
,
1
(
1
), p.
114
.10.1504/IJECB.2009.022862
35.
Langohr
,
G. D. G.
,
2015
,
Fundamentals of the Biomechanical Characteristics Related to the Loading of Reverse Total Shoulder Arthroplasty Implants and the Development of a Wear Simulation Strategy
,
Electronic Thesis and Dissertation Repository, 3436, Western University, London, ON, Canada.https://www.semanticscholar.org/paper/Fundamentals-of-the-Biomechanical-Characteristics-a-Langohr/e909d198af05e117356af2e05b3f1b5bec2548a9
36.
Kwon
,
Y. W.
,
Forman
,
R. E.
,
Walker
,
P. S.
, and
Zuckerman
,
J. D.
,
2010
, “
Analysis of Reverse Total Shoulder Joint Forces and Glenoid Fixation
,”
Bull. NYU Hosp. Jt. Dis.
,
68
(
4
), pp.
273
280
.https://pubmed.ncbi.nlm.nih.gov/21162705/
37.
Anglin
,
C.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
,
2000
, “
Mechanical Testing of Shoulder Prostheses and Recommendations for Glenoid Design
,”
J. Shoulder Elbow Surg.
,
9
(
4
), pp.
323
331
.10.1067/mse.2000.105451
38.
Bicknell
,
R. T.
,
Liew
,
A. S.
,
Danter
,
M. R.
,
Patterson
,
S. D.
,
King
,
G. J. W.
,
Chess
,
D. G.
, and
Johnson
,
J. A.
,
2003
, “
Does Keel Size, the Use of Screws, and the Use of Bone Cement Affect Fixation of a Metal Glenoid Implant?
,”
J. Shoulder Elbow Surg.
,
12
(
3
), pp.
268
275
.10.1016/S1058-2746(02)00028-9
39.
Collins
,
D.
,
Tencer
,
A.
,
Sidles
,
J.
, and
Matsen
,
F.
, 3rd.
,
1992
, “
Edge Displacement and Deformation of Glenoid Components in Response to Eccentric Loading. The Effect of Preparation of the Glenoid Bone
,”
J. Bone Jt. Surg. Am.
,
74
(
4
), pp.
501
507
.10.2106/00004623-199274040-00005
40.
Karduna
,
A. R.
,
Williams
,
G. R.
,
Iannotti
,
J. P.
, and
Williams
,
J. L.
,
1998
, “
Total Shoulder Arthroplasty Biomechanics: A Study of the Forces and Strains at the Glenoid Component
,”
J. Biomech. Eng.
,
120
(
1
), pp.
92
99
.10.1115/1.2834312
41.
Sukjamsri
,
C.
,
Geraldes
,
D. M.
,
Gregory
,
T.
,
Ahmed
,
F.
,
Hollis
,
D.
,
Schenk
,
S.
,
Amis
,
A.
,
Emery
,
R.
, and
Hansen
,
U.
,
2015
, “
Digital Volume Correlation and micro-CT: An in-Vitro Technique for Measuring Full-Field Interface Micromotion Around Polyethylene Implants
,”
J. Biomech.
,
48
(
12
), pp.
3447
3454
.10.1016/j.jbiomech.2015.05.024
You do not currently have access to this content.