Abstract

Mechanical ventilators are advanced life-supporting machines in this century. The ventilator needs to be safe, flexible, and easy for competent clinicians to use. Since ventilators supply the patient with gas, they need pneumatic components to be present. First technology ventilators were typically powered by pneumatic energy. Gas pressure is used to power ventilators as well as ventilate patients. Nowadays, ventilators are operated electronically with the useful microprocessor tool. This proposal aims to design a simple portable mechanical ventilator that includes measuring some important physiological variables such as respiratory rate, heart rate, and O2 saturation, which can be utilized in hospital and at home. The proposed system includes Arduino, Raspberry pi4, touch screen, and graphical user interface. This study showed a significant individual performance for measuring some important parameters such as flow rate, tidal volume, and minute ventilation. The accuracy of measuring the flow rate was 72%. The Cohen's kappa (CK) was estimated to be 0.61. The accuracy of calculated the tidal volume was estimated at 83% with 0.80 CK. The accuracy of measuring the O2 saturation was estimated at 99% with 0.99 CK. The advantages of the proposed design are cost-effective, safe, flexible, and easy to use. Also, this system is smart and can control its transactions, so it can be used at home without the need for professional help. The operating parameters can also be set by the user with a simple user interface.

References

1.
Velavan
,
T. P.
, and
Meyer
,
C. G.
,
2020
, “
The COVID‐19 Epidemic
,”
Trop. Med. Int. Health
,
25
(
3
), pp.
278
280
.10.1111/tmi.13383
2.
Giordano
,
G.
,
Blanchini
,
F.
,
Bruno
,
R.
,
Colaneri
,
P.
,
Di Filippo
,
A.
,
Di Matteo
,
A.
, and
Colaneri
,
M.
,
2020
, “
Modelling the COVID-19 Epidemic and Implementation of Population-Wide Interventions in Italy
,”
Nat. Med.
,
26
(
6
), pp.
855
860
.10.1038/s41591-020-0883-7
3.
Thomson
,
A.
,
1997
, “
The Role of Negative Pressure Ventilation
,”
Arch. Dis. Child.
,
77
(
5
), pp.
454
458
.10.1136/adc.77.5.454
4.
Tobias
,
J. D.
,
2010
, “Conventional Mechanical Ventilation,”
Saudi J. Anaesth.
, 4(2), pp.
86
98
.10.4103/1658-354X.65128
5.
Meyer
,
T. J.
, and
Hill
,
N. S.
,
1994
, “
Noninvasive Positive Pressure Ventilation to Treat Respiratory Failure
,”
Ann. Intern. Med.
,
120
(
9
), pp.
760
770
.10.7326/0003-4819-120-9-199405010-00008
6.
Vogelmeier
,
C. F.
,
Criner
,
G. J.
,
Martinez
,
F. J.
,
Anzueto
,
A.
,
Barnes
,
P. J.
,
Bourbeau
,
J.
,
Celli
,
B. R.
,
Chen
,
R.
,
Decramer
,
M.
,
Fabbri
,
L. M.
,
Frith
,
P.
,
Halpin
,
D. M. G.
,
López Varela
,
M. V.
,
Nishimura
,
M.
,
Roche
,
N.
,
Rodriguez-Roisin
,
R.
,
Sin
,
D. D.
,
Singh
,
D.
,
Stockley
,
R.
,
Vestbo
,
J.
,
Wedzicha
,
J. A.
, and
Agustí
,
A.
,
2017
, “
Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary
,”
Am. J. Respir. Crit. Care Med.
,
195
(
5
), pp.
557
582
.10.1164/rccm.201701-0218PP
7.
Rochwerg
,
B.
,
Brochard
,
L.
,
Elliott
,
M. W.
,
Hess
,
D.
,
Hill
,
N. S.
,
Nava
,
S.
,
Navalesi
,
P.
,
Antonelli
,
M.
,
Brozek
,
J.
,
Conti
,
G.
,
Ferrer
,
M.
,
Guntupalli
,
K.
,
Jaber
,
S.
,
Keenan
,
S.
,
Mancebo
,
J.
,
Mehta
,
S.
, and
Raoof
,
S.
,
2017
, “
Official ERS/ATS Clinical Practice Guidelines: Noninvasive Ventilation for Acute Respiratory Failure
,”
Eur. Respir. J.
,
50
(
2
), p.
1602426
.10.1183/13993003.02426-2016
8.
Simonds
,
A. K.
, and
Elliott
,
M. W.
,
1995
, “
Outcome of Domiciliary Nasal Intermittent Positive Pressure Ventilation in Restrictive and Obstructive Disorders
,”
Thorax
,
50
(
6
), pp.
604
609
.10.1136/thx.50.6.604
9.
Kacmarek
,
R. M.
,
2011
, “
The Mechanical Ventilator: Past, Present, and Future
,”
Respir. Care
,
56
(
8
), pp.
1170
1180
.10.4187/respcare.01420
10.
Cook
,
T. M.
, and
Kelly
,
F. E.
,
2015
, “
Time to Abandon the ‘Vintage’ Laryngeal Mask Airway and Adopt Second-Generation Supraglottic Airway Devices as First Choice
,”
Br. J. Anaesth.
, 115(4), pp.
497
499
.10.1093/bja/aev156
11.
Platen
,
P. V.
,
Pomprapa
,
A.
,
Lachmann
,
B.
, and
Leonhardt
,
S.
,
2020
, “
The Dawn of Physiological Closed-Loop Ventilation—A Review
,”
Crit. Care
,
24
(
1
), p.
1
.10.1186/s13054-020-2810-1
12.
Chopin
,
C.
, and
Chambrin
,
M. C.
,
1993
, “
Closed-Loop Control in Mechanical Ventilation
,”
Yearbook of Intensive Care and Emergency Medicine 1993
,
Springer
,
Berlin, Heidelberg
, pp.
499
507
.
13.
Desmettre
,
T. J.
,
Chambrin
,
M. C.
,
Mangalaboyi
,
J.
,
Pigot
,
A.
, and
Chopin
,
C.
,
2005
, “
Evaluation of Auto-Regulated Inspiratory Support During Rebreathing and Acute Lung Injury in Pigs
,”
Respir. Care
,
50
(
8
), pp.
1050
1061
.http://rc.rcjournal.com/content/50/8/1050
14.
Tobin
,
M. J.
,
2001
, “
Advances in Mechanical Ventilation
,”
New Engl. J. Med.
,
344
(
26
), pp.
1986
1996
.10.1056/NEJM200106283442606
15.
Dreyfuss
,
D.
, and
Saumon
,
G.
,
1993
, “
Role of Tidal Volume, FRC, and End-Inspiratory Volume in the Development of Pulmonary Edema Following Mechanical Ventilation
,”
Am. Rev. Respir. Disease
,
148
(
5
), pp.
1194
1203
.10.1164/ajrccm/148.5.1194
16.
Frat
,
J.-P.
,
Thille
,
A. W.
,
Mercat
,
A.
,
Girault
,
C.
,
Ragot
,
S.
,
Perbet
,
S.
,
Prat
,
G.
,
Boulain
,
T.
,
Morawiec
,
E.
,
Cottereau
,
A.
,
Devaquet
,
J.
,
Nseir
,
S.
,
Razazi
,
K.
,
Mira
,
J.-P.
,
Argaud
,
L.
,
Chakarian
,
J.-C.
,
Ricard
,
J.-D.
,
Wittebole
,
X.
,
Chevalier
,
S.
,
Herbland
,
A.
,
Fartoukh
,
M.
,
Constantin
,
J.-M.
,
Tonnelier
,
J.-M.
,
Pierrot
,
M.
,
Mathonnet
,
A.
,
Béduneau
,
G.
,
Delétage-Métreau
,
C.
,
Richard
,
J.-C. M.
,
Brochard
,
L.
, and
Robert
,
R.
,
2015
, “
High-Flow Oxygen Through Nasal Cannula in Acute Hypoxemic Respiratory Failure
,”
New Engl. J. Med.
,
372
(
23
), pp.
2185
2196
.10.1056/NEJMoa1503326
17.
Matthay
,
M. A.
, and
Zemans
,
R. L.
,
2011
, “
The Acute Respiratory Distress Syndrome: Pathogenesis and Treatment
,”
Annu. Rev. Pathol. Mech. Disease
,
6
(
1
), pp.
147
–1
63
.10.1146/annurev-pathol-011110-130158
18.
Wysocki
,
M.
,
Jouvet
,
P.
, and
Jaber
,
S.
,
2014
, “
Closed Loop Mechanical Ventilation
,”
J. Clin. Monit. Comput.
,
28
(
1
), pp.
49
56
.10.1007/s10877-013-9465-2
19.
Martin
,
E.
,
Fenaughty
,
K.
,
Parker
,
D.
,
Lubliner
,
M.
, and
Howard
,
L.
,
2018
,
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
,
Florida Solar Energy Center, Cocoa
,
FL
.
20.
Schena
,
E.
,
Massaroni
,
C.
,
Saccomandi
,
P.
, and
Cecchini
,
S.
,
2015
, “
Flow Measurement in Mechanical Ventilation: A Review
,”
Med. Eng. Phys.
,
37
(
3
), pp.
257
264
.10.1016/j.medengphy.2015.01.010
You do not currently have access to this content.