Abstract

Obstructive sleep apnea (OSA) is an acute breathing disorder, which causes soft tissue inside the throat to collapse, thus blocking the airways while sleeping. This syndrome is usually treated by the supply of pressurized air delivered by a pump, which is connected to the patient via mouth and/or nose using a mask as an interface. While most of the literature on OSA is focused on the pressure pump and the therapy conditions (pressure, humidity, velocity, etc.) there has been an increased interest in the mask/interface as a key contributing factor to the treatment's effectiveness. Mask-related issues such as skin damage, allergic reactions, or air leaking due to poor fit can deter OSA patients from following this treatment. This study presents a preliminary evaluation of customized mask designs, which are tailored to specific wearer's facial contours. The development process includes the use of three-dimensional scanning/modeling/printing as an integrated workflow. Individual facial features have been digitally acquired and used to generate a custom device, which conforms to predefined facial landmarks of interest, which delimit the mask contour. A trial study was undertaken by recruiting two healthy volunteers for the fit and comfort evaluation of custom mask designs using a randomized fit test with a series of three-dimensional (3D) printed versus commercial standard mask. Results indicate that custom masks exhibit a higher level of comfort compared to conventional continuous positive airway pressure (CPAP) masks particularly on fit, contact pressure and comfort.

References

1.
Sullivan
,
C. E.
, and
Issa
,
F. O.
,
1980
, “
Pathophysiological Mechanisms Obstructive Sleep Apnea
,”
Sleep Vols.
,
3
(
3–4
), pp.
235
46
.10.1093/sleep/3.3-4.235
2.
Ma
,
Z.
,
Drinnan
,
M.
,
Hyde
,
P.
, and
Munguia
,
J.
,
2018
, “
Mask Interface for Continuous Positive Airway Pressure Therapy: Selection and Design Considerations
,”
Exp. Rev. Med. Dev.
,
15
(
10
), pp.
725
733
.10.1080/17434440.2018.1525291
3.
Davidson
,
C.
,
Banham
,
S.
,
Elliott
,
M.
,
Kennedy
,
D.
,
Gelder
,
C.
,
Glossop
,
A.
,
Church
,
A. C.
,
Creagh-Brown
,
B.
,
Dodd
,
J. W.
,
Felton
,
T.
,
Foëx
,
B.
,
Mansfield
,
L.
,
McDonnell
,
L.
,
Parker
,
R.
,
Patterson
,
C. M.
,
Sovani
,
M.
,
Davidson
,
L. T.
, and
BTS Standards of Care Committee Member, British Thoracic Society/Intensive Care Society Acute Hypercapnic Respiratory Failure Guideline Development Group, On behalf of the British Thoracic Society Standards of Care Committee,
2016
, “
BTS/ICS Guideline for the Ventilatory Management of Acute Hypercapnic Respiratory Failure in Adults
,”
Thorax
,
71
(
Suppl 2
), pp.
ii1
ii35
.10.1136/thoraxjnl-2015-208209
4.
OSA-Hub
,
2020
, “
CPAP Mask Sizing Guides
,” RESMED, San Diego, CA, accessed Mar. 3, 2021, https://osahub.resmed.com/whats-hot/sleep-apnoea-articles/cpap-mask-fitting/
5.
National Health Service – NHS
,
2020
, “
Sleep Apnoea
,” NHS, Leeds, UK, accessed Mar. 3, 2021, https://www.nhs.uk/conditions/sleep-apnoea/
6.
Brill
,
A. K.
,
2014
, “
How to Avoid Interface Problems in Acute Noninvasive Ventilation
,”
Breathe
,
10
(
3
), pp.
230
242
.10.1183/20734735.003414
7.
Visscher
,
M. O.
,
White
,
C. C.
,
Jones
,
J. M.
,
Cahill
,
T.
,
Jones
,
D. C.
, and
Pan
,
B. S.
,
2015
, “
Face Masks for Noninvasive Ventilation: Fit, Excess Skin Hydration, and Pressure Ulcers
,”
Respiratory Care
,
60
(
11
), pp.
1536
1547
.10.4187/respcare.04036
8.
Barros
,
L. S.
,
Talaia
,
P.
,
Drummond
,
M.
, and
Natal-Jorge
,
R.
,
2014
, “
Facial Pressure Zones of an Oronasal Interface for Noninvasive Ventilation: A Computer Model Analysis
,”
J. Bras Pneumol
,
40
(
6
), pp.
652
657
.10.1590/S1806-37132014000600009
9.
Martins De Araújo
,
M. T.
,
Vieira
,
S. B.
,
Vasquez
,
E. C.
, and
Fleury
,
B.
,
2000
, “
Heated Humidification or Face Mask to Prevent Upper Airway Dryness During Continuous Positive Airway Pressure Therapy
,”
Chest
,
117
(
1
), pp.
142
147
.10.1378/chest.117.1.142
10.
Massie
,
C. A.
, and
Hart
,
R. W.
,
2003
, “
Clinical Outcomes Related to Interface Type in Patients With Obstructive Sleep Apnea/Hypopnea Syndrome Who Are Using Continuous Positive Airway Pressure
,”
Chest
,
123
(
4
), pp.
1112
1118
.10.1378/chest.123.4.1112
11.
Newnam
,
K. M.
,
McGrath
,
J. M.
,
Estes
,
T.
,
Jallo
,
N.
,
Salyer
,
J.
, and
Bass
,
W. T.
,
2013
, “
An Integrative Review of Skin Breakdown in the Preterm Infant Associated With Nasal Continuous Positive Airway Pressure
,”
J. Obstetric, Gynecol. Neonatal Nurs.
,
42
(
5
), pp.
508
516
.10.1111/1552-6909.12233
12.
Holanda
,
M. A.
,
Reis
,
R. C.
,
Winkeler
,
G. F.
,
Fortaleza
,
S. C.
,
Lima
,
J. W.
, and
Pereira
,
E. D.
,
2009
, “
Influence of Total Face, Facial and Nasal Masks on Short-Term Adverse Effects During Noninvasive Ventilation
,”
J. Brasil. Pneumol.
,
35
(
2
), pp.
164
173
.10.1590/S1806-37132009000200010
13.
Simakajornboon
,
N.
,
Rulong
,
G.
,
2019
, “
Use of a 3D Printer to Make Custom Sleep Masks for Positive Airway Pressure Treatment
,” NIH-National Library of Medicine, Online, accessed Mar. 3, 2021, https://clinicaltrials.gov/ct2/show/NCT02896751
14.
Morrison
,
R. J.
,
Hollister
,
S. J.
,
Niedner
,
M. F.
,
Mahani
,
M. G.
,
Park
,
A. H.
,
Mehta
,
D. K.
,
Ohye
,
R. G.
, and
Green
,
G. E.
,
2015
, “
Mitigation of Tracheobronchomalacia With 3D-Printed Personalized Medical Devices in Pediatric Patients
,”
Sci Transl Med.
,
7
(
285
), pp.
285ra64
285ra64
.10.1126/scitranslmed.3010825
15.
Wu
,
Y. Y.
,
Acharya
,
D.
,
Xu
,
C.
,
Cheng
,
B.
,
Rana
,
S.
, and
Shimada
,
K.
,
2018
, “
Custom-Fit Three-Dimensional-Printed BiPAP Mask to Improve Compliance in Patients Requiring Long-Term Noninvasive Ventilatory Support
,”
ASME J. Med. Dev.
,
12
(
3
), p.
031003
.10.1115/1.4040187
16.
Newcastle-University,
2020
, “
Ethics Forms and Processes
,”
Newcastle University
, Newcastle upon Tyne, UK, accessed Mar. 3, 2021, https://www.ncl.ac.uk/research/researchgovernance/ethics/process
17.
Kochel
,
J.
,
Meyer-Marcotty
,
P.
,
Strnad
,
F.
,
Kochel
,
M.
, and
Stellzig-Eisenhauer
,
A.
,
2010
, “
3D Soft Tissue Analysis—Part 1: Sagittal Parameters
,”
J. Orofacial Orthop.
, 71(1), pp.
40
52
.10.1007/s00056-010-9926-x
18.
Sforza
,
C.
, and
Ferrario
,
V.
,
2006
, “
Soft-Tissue Facial Anthropometry in Three Dimensions: From Anatomical Landmarks to Digital Morphology in Research, Clinics and Forensic Anthropology
,”
J. Anthropolog. Sci.
,
84
, pp.
97
124
.https://www.researchgate.net/publication/285475495_Soft-tissue_facial_anthropometry_in_three_dimensions_From_anatomical_landmarks_to_digital_morphology_in_research_clinics_and_forensic_anthropology
19.
Uzun
,
A.
, and
Özdemir
,
F.
,
2014
, “
Morphometric Analysis of Nasal Shapes and Angles in Young Adults
,”
Braz. J. Otorhinolaryngol.
,
80
(
5
), pp.
397
402
.10.1016/j.bjorl.2014.07.010
20.
Metamason
,
2020
, “
Automated 3D Scan to Print Pipeline for Custom CPAP Masks
,” ecr-Labs, Los Angeles, CA, accessed Mar. 3, 2021, https://www.ecrlabs.com/metamason-2/
21.
Sims
,
A.
,
Simmons
,
A.
,
Hoffman
,
M.
, and
Schindhelm
,
K.
,
2016
, “
Facial Deformations During Nasal Continuous Positive Airway Pressure Therapy
,”
J. Biomech.
,
49
(
16
), pp.
3848
3854
.10.1016/j.jbiomech.2016.10.027
22.
CPAPXchange
,
2020
, “
Nasal Soft Cushion Mask Pad for Various Masks
,” CPAP Xchange, Nashua, NH, accessed Mar. 3, 2021, https://www.cpapxchange.com/RM-gecko-sleep-comfort-care-cpap-mask-pad.html
23.
Creaform
,
2017
, “
Educational Solution Suite for Researchers
,” Creaform, Levis, QC, Canada, accessed Mar. 3, 2021, https://www.creaform3d.com/en/education/research
You do not currently have access to this content.