An approach for the force/motion transmissibility analysis of full mobility planar multiloop mechanisms (PMLM) is proposed in this paper by drawing on the duality of twist space and wrench space. By making a comparison study, it is concluded that the velocity model of a full mobility planar multiloop mechanism can be expressed in the same form as that of a full mobility planar parallel mechanism (PPM). Thereby, a set of dimensionally homogeneous transmission indices is proposed, which can be employed for precisely representing the closeness to different types of singularities as well as for dimensional optimization. A 3-RRR parallel mechanism and a full mobility planar multiloop mechanism for face-shovel excavation are taken as examples to demonstrate the validity and effectiveness of the proposed approach.

References

1.
Davies
,
T. H.
, and
Crossley
,
F. E.
,
1966
, “
Structural Analysis of Plane Linkages by Franke's Condensed Notation
,”
J. Mech.
,
1
(
2
), pp.
171
183
.
2.
Sohn
,
W. J.
, and
Freudenstein
,
F.
,
1986
, “
An Application of Dual Graphs to the Automatic Generation of the Kinematic Structures of Mechanisms
,”
ASME J. Mech., Transm. Autom. Des.
,
108
(
3
), pp.
392
398
.
3.
Ding
,
H.
, and
Huang
,
Z.
,
2007
, “
The Establishment of the Canonical Perimeter Topological Graph of Kinematic Chains and Isomorphism Identification
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
915
923
.
4.
Ding
,
H.
,
Huang
,
Z.
, and
Mu
,
D.
,
2008
, “
Computer-Aided Structure Decomposition Theory of Kinematic Chains and Its Applications
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1596
1609
.
5.
Ding
,
H.
,
Zhao
,
J.
, and
Huang
,
Z.
,
2010
, “
Unified Structural Synthesis of Planar Simple and Multiple Joint Kinematic Chains
,”
Mech. Mach. Theory
,
45
(
4
), pp.
555
568
.
6.
Ding
,
H.
,
Kecskeméthy
,
A.
,
Huang
,
Z.
, and
Cao
,
W.
,
2012
, “
Complete Atlas Database of 2-DOF Kinematic Chains and Creative Design of Mechanisms
,”
ASME J. Mech. Des.
,
124
(
3
), p.
031006
.
7.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
8.
Gosselin
,
C. M.
,
1990
, “
Dexterity Indices for Planar and Spatial Robotic Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Cincinnati, OH, May 13–18, pp.
650
655
.
9.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
,
1992
, “
Singularity Analysis and Representation of Planar Parallel Manipulators
,”
Rob. Auton. Syst.
,
10
(
4
), pp.
209
224
.
10.
Sefrioui
,
J.
, and
Gosselin
,
C. M.
,
1995
, “
On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators
,”
Mech. Mach. Theory
,
30
(
4
), pp.
533
551
.
11.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1994
, “
Singularity Analysis of Mechanisms and Robots Via a Motion-Space Model of the Instantaneous Kinematics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Diego, CA, May 8–13, pp.
980
985
.
12.
Gao
,
F.
,
Liu
,
X.-J.
, and
William
,
A. G.
,
1998
, “
Performance Evaluation of Two-Degree-of-Freedom Planar Parallel Robots
,”
Mech. Mach. Theory
,
33
(
6
), pp.
661
668
.
13.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
145
169
.
14.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
119
144
.
15.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
On the Optimal Kinematic Design of the PRRRP 2-DoF Parallel Mechanism
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1111
1130
.
16.
Flores
,
F. G.
,
Kecskeméthy
,
A.
, and
Pöttker
,
A.
,
2007
, “
Workspace Analysis and Maximal Force Calculation of a Face-Shovel Excavator Using Kinematical Transformers
,”
12th World Congress in Mechanism and Machine Science
, Besancon, France, June 18–21, pp. 1–6.
17.
Merlet
,
J.-P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
18.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, 2nd ed.,
Springer
,
Dordrecht, The Netherlands
.
19.
Merlet
,
J.-P.
, and
Gosselin
,
C. M.
,
2008
, “
Parallel Mechanisms and Robots
,”
Springer Handbook of Robotics
,
S.
Bruno
and
K.
Oussama
, eds.,
Springer-Verlag
, Berlin, pp.
269
285
.
20.
Balli
,
S. S.
, and
Satish
,
C.
,
2002
, “
Transmission Angle in Mechanisms
,”
Mech. Mach. Theory
,
37
(
2
), pp.
175
195
.
21.
Balli
,
S. S.
, and
Satish
,
C.
,
2004
, “
Synthesis of a Five-Bar Mechanism of Variable Topology Type With Transmission Angle Control
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
128
134
.
22.
Dresner
,
T. L.
, and
Buffinton
,
K. W.
,
1991
, “
Definition of Pressure and Transmission Angles Applicable to Multi-Input Mechanisms
,”
ASME J. Mech. Des.
,
113
(
4
), pp.
495
499
.
23.
Bonev
,
A. I.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2003
, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms Via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
.
24.
Lin
,
C.-C.
, and
Chang
,
W.-T.
,
2002
, “
The Force Transmissibility Index of Planar Linkage Mechanisms
,”
Mech. Mach. Theory
,
37
(
12
), pp.
1465
1485
.
25.
Chang
,
W.-T.
,
Lin
,
C.-C.
, and
Lee
,
J.-J.
,
2003
, “
Force Transmissibility Performance of Parallel Manipulators
,”
J. Rob. Syst.
,
20
(
11
), pp.
659
670
.
26.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
589
597
.
27.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
28.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J. S.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
29.
Chen
,
X.
,
Liu
,
X.-J.
, and
Xie
,
F.
,
2015
, “
Screw Theory Based Singularity Analysis of Lower-Mobility Parallel Robots Considering the Motion/Force Transmissibility and Constrainability
,”
Math. Probl. Eng.
,
2015
(
2015
), p.
487956
.
30.
Wang
,
J.-S.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
31.
Huang
,
T.
,
Wang
,
M.
,
Yang
,
S.
,
Sun
,
T.
,
Chetwynd
,
D. G.
, and
Xie
,
F.
,
2014
, “
Force/Motion Transmissibility Analysis of Six Degree of Freedom Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031010
.
32.
Liu
,
H.
,
Wang
,
M.
,
Huang
,
T.
,
Chetwynd
,
D. G.
, and
Kecskeméthy
,
A.
,
2015
, “
A Dual Space Approach for Force/Motion Transmissibility Analysis of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
034504
.
33.
Liu
,
H.
,
Huang
,
T.
,
Kecskeméthy
,
A.
, and
Chetwynd
,
D. G.
,
2014
, “
A Generalized Approach for Computing the Transmission Index of Parallel Mechanisms
,”
Mech. Mach. Theory
,
74
, pp.
245
256
.
34.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
, Cambridge, UK.
35.
Hall
,
A.
, and
McAree
,
P. R.
,
2005
, “
Robust Bucket Position Tracking for a Large Hydraulic Excavator
,”
Mech. Mach. Theory
,
40
(
1
), pp.
1
16
.
You do not currently have access to this content.