Kinematic redundancy may be an efficient way to improve the performance of parallel manipulators. Nevertheless, the inverse kinematic problem of this kind of manipulator presents infinite solutions. The selection of a single kinematic configuration among a set of many possible ones is denoted as redundancy resolution. While several redundancy resolution strategies have been proposed for planning the motion of redundant serial manipulators, suitable proposals for parallel manipulators are seldom. Redundancy resolution can be treated as an optimization problem that can be solved locally or globally. Gradient projection methods have been successfully employed to solve it locally. For global strategies, these methods may be computationally demanding and mathematically complex. The main objective of this work is to exploit the use of differential dynamic programing (DDP) for decreasing the computational demand and mathematical complexity of a global optimization based on the gradient projection method for redundancy resolution. The outcome of the proposed method is the optimal inputs for the active joints for a given trajectory of the end-effector considering the input limitations and different cost functions. Using the proposed method, the performance of a redundant 3PRRR manipulator is investigated numerically and experimentally. The results demonstrate the capability and versatility of the strategy.

References

1.
Luces
,
M.
,
Boyraz
,
P.
,
Mahmoodi
,
M.
,
Keramati
,
F.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2015
, “
An Emulator-Based Prediction of Dynamic Stiffness for Redundant Parallel Kinematic Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021021
.
2.
Wu
,
J.
,
Wang
,
J.
, and
You
,
Z.
,
2011
, “
A Comparison Study on the Dynamics of Planar 3-DOF 4-RRR, 3-RRR and 2-RRR Parallel Manipulators
,”
Rob. Comput.-Integr. Manuf.
,
27
(
1
), pp.
150
156
.
3.
Fontes
,
J. V.
, and
da Silva
,
M. M.
,
2016
, “
On the Dynamic Performance of Parallel Kinematic Manipulators With Actuation and Kinematic Redundancies
,”
Mech. Mach. Theory
,
103
, pp.
148
166
.
4.
Wu
,
J.
,
Zhang
,
B.
, and
Wang
,
L.
,
2015
, “
A Measure for Evaluation of Maximum Acceleration of Redundant and Nonredundant Parallel Manipulators
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021001
.
5.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
.
6.
Kotlarski
,
J.
,
Abdellatif
,
H.
,
Ortmaier
,
T.
, and
Heimann
,
B.
,
2009
, “
Enlarging the Useable Workspace of Planar Parallel Robots Using Mechanisms of Variable Geometry
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR
), London, June 22–24, pp.
63
72
.
7.
Paccot
,
F.
,
Andref
,
N.
, and
Martinet
,
P.
,
2009
, “
Review on the Dynamic Control of Parallel Kinematic Machines: Theory and Experiments
,”
Int. J. Rob. Res.
,
28
(
3
), pp.
395
416
.
8.
Bourbonnais
,
F.
,
Bigras
,
P.
, and
Bonev
,
I. A.
,
2015
, “
Minimum-Time Trajectory Planning and Control of a Pick-and-Place Five-Bar Parallel Robot
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
740
749
.
9.
Lakhal
,
O.
,
Melingui
,
A.
, and
Merzouki
,
R.
,
2016
, “
Hybrid Approach for Modeling and Solving of Kinematics of a Compact Bionic Handling Assistant Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
21
(
3
), pp.
1326
1335
.
10.
da Silva
,
M. M.
,
de Oliveira
,
L. P.
,
Bruls
,
O.
,
Michelin
,
M.
,
Baradat
,
C.
,
Tempier
,
O.
,
Caigny
,
J. D.
,
Swevers
,
J.
,
Desmet
,
W.
, and
Brussel
,
H. V.
,
2010
, “
Integrating Structural and Input Design of a 2-DOF High-Speed Parallel Manipulator: A Flexible Model-Based Approach
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1509
1519
.
11.
Ahuactzin
,
J. M.
, and
Gupta
,
K. K.
,
1999
, “
The Kinematic Roadmap: A Motion Planning Based Global Approach for Inverse Kinematics of Redundant Robots
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
653
669
.
12.
Cha
,
S.-H.
,
Lasky
,
T. A.
, and
Velinsky
,
S. A.
,
2007
, “
Singularity Avoidance for the 3-RRR Mechanism Using Kinematic Redundancy
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
1195
1200
.
13.
Muller
,
A.
,
2008
, “
On the Terminology for Redundant Parallel Manipulators
,”
ASME
Paper No. DETC2008-49112.
14.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2006
, “
Workspace Comparison of Kinematically Redundant Planar Parallel Manipulators
,”
Romansy 16
, Vol. 487,
Springer
, Vienna, Austria, pp.
89
96
.
15.
Kotlarski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2011
, “
Experimental Validation of the Influence of Kinematic Redundancy on the Pose Accuracy of Parallel Kinematic Machines
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
1923
1929
.
16.
Xie
,
F.
,
Liu
,
X.-J.
, and
Wang
,
J.
,
2011
, “
Performance Evaluation of Redundant Parallel Manipulators Assimilating Motion/Force Transmissibility
,”
Int. J. Adv. Rob. Syst.
,
8
(
5
), pp.
113
124
.
17.
Ruiz
,
A. G.
,
Fontes
,
J. V. C.
, and
da Silva
,
M. M.
,
2015
, “
The Impact of Kinematic and Actuation Redundancy on the Energy Efficiency of Planar Parallel Kinematic Machines
,”
17th International Symposium on Dynamic Problems of Mechanics
, Natal, Brazil, Feb. 22–27, pp. 1–9.
18.
Ukidve
,
C. S.
,
McInroy
,
J. E.
, and
Jafari
,
F.
,
2008
, “
Using Redundancy to Optimize Manipulability of Stewart Platforms
,”
IEEE/ASME Trans. Mechatronics
,
13
(
4
), pp.
475
479
.
19.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.
20.
Shin
,
K.
, and
McKay
,
N. D.
,
1986
, “
A Dynamic Programming Approach to Trajectory Planning of Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
31
(
6
), pp.
491
500
.
21.
Nakamura
,
Y.
, and
Hanafusa
,
H.
,
1987
, “
Optimal Redundancy Control of Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
1
), pp.
32
42
.
22.
Martin
,
D. P.
,
Baillieul
,
J.
, and
Hollerbach
,
J. M.
,
1989
, “
Resolution of Kinematic Redundancy Using Optimization Techniques
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
529
533
.
23.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2002
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: Nsga-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
24.
Marcos
,
M. G.
,
Machado
,
J. A. T.
, and
Azevedo-Perdicoúlis
,
T.-P.
,
2012
, “
A Multi-Objective Approach for the Motion Planning of Redundant Manipulators
,”
Appl. Soft Comput.
,
12
(
2
), pp.
589
599
.
25.
Kim
,
H.
,
Miller
,
L. M.
,
Byl
,
N.
,
Abrams
,
G.
, and
Rosen
,
J.
,
2012
, “
Redundancy Resolution of the Human Arm and an Upper Limb Exoskeleton
,”
IEEE Trans. Biomed. Eng.
,
59
(
6
), pp.
1770
1779
.
26.
Minami
,
M.
,
Li
,
X.
,
Matsuno
,
T.
, and
Yanou
,
A.
,
2016
, “
Dynamic Reconfiguration Manipulability for Redundant Manipulators
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061004
.
27.
Kotlarski
,
J.
,
Thanh
,
T. D.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2010
, “
Optimization Strategies for Additional Actuators of Kinematically Redundant Parallel Kinematic Machines
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
656
661
.
28.
Thanh
,
T. D.
,
Kotlarski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2012
, “
Dynamics Identification of Kinematically Redundant Parallel Robots Using the Direct Search Method
,”
Mech. Mach. Theory
,
52
, pp.
277
295
.
29.
Boudreau
,
R.
, and
Nokleby
,
S.
,
2012
, “
Force Optimization of Kinematically-Redundant Planar Parallel Manipulators Following a Desired Trajectory
,”
Mech. Mach. Theory
,
56
, pp.
138
155
.
30.
Bellman
,
R.
,
2003
,
Dynamic Programming
,
Dover Publications
, Mineola, NY.
31.
Guigue
,
A.
,
Ahmadi
,
M.
,
Hayes
,
M.
,
Langlois
,
R.
, and
Tang
,
F.
,
2007
, “
A Dynamic Programming Approach to Redundancy Resolution With Multiple Criteria
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
1375
1380
.
32.
Nakamura
,
Y.
, and
Hanafusa
,
H.
,
1986
, “
Inverse Kinematic Solutions With Singularity Robustness for Robot Manipulator Control
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
163
171
.
33.
Cahill
,
A. J.
,
James
,
M. R.
,
Kieffer
,
J. C.
, and
Williamson
,
D.
,
1998
, “
Remarks on the Application of Dynamic Programming to the Optimal Path Timing of Robot Manipulators
,”
Int. J. Robust Nonlinear Control
,
8
(
6
), pp.
463
482
.
34.
Tassa
,
Y.
,
Mansard
,
N.
, and
Todorov
,
E.
,
2014
, “
Control-Limited Differential Dynamic Programming
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
1168
1175
.
35.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
, 4th ed.,
Wiley
, Hoboken,
NJ
.
36.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures—A Comprehensive Literature Survey
,”
J. Intell. Rob. Syst.
,
77
(
3
), pp.
547
570
.
You do not currently have access to this content.