A screw-based formulation of the kinematics, differential kinematics, and statics of soft manipulators is presented, which introduces the soft robotics counterpart to the fundamental geometric theory of robotics developed since Brockett's original work on the subject. As far as the actuation is concerned, the embedded tendon and fluidic actuation are modeled within the same screw-based framework, and the screw-system to which they belong is shown. Furthermore, the active and passive motion subspaces are clearly differentiated, and guidelines for the manipulable and force-closure conditions are developed. Finally, the model is validated through experiments using the soft manipulator for minimally invasive surgery STIFF-FLOP.
Issue Section:
Research Papers
References
1.
Webster
, R. J.
, and Jones
, B. A.
, 2010
, “Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,” Int. J. Rob. Res.
, 29
(13
), pp. 1661
–1683
.2.
Walker
, I. D.
, 2013
, “Continuous Backbone ‘Continuum’ Robot Manipulators
,” ISRN Rob.
, 2013
, pp. 1
–19
.3.
Jones
, B. A.
, and Walker
, I. D.
, 2006
, “Kinematics for Multisection Continuum Robots
,” IEEE Trans. Rob.
, 22
(1
), pp. 43
–55
.4.
Neppalli
, S.
, Csencsits
, M. A.
, Jones
, B. A.
, and Walker
, I. D.
, 2009
, “Closed-Form Inverse Kinematics for Continuum Manipulators
,” Adv. Rob.
, 23
(15
), pp. 2077
–2091
.5.
Rucker
, D. C.
, and Webster
, R. J.
, 2011
, “Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,” IEEE Trans. Rob.
, 27
(6
), pp. 1033
–1044
.6.
Godage
, I. S.
, Medrano-Cerda
, G. A.
, Branson
, D. T.
, Guglielmino
, E.
, and Caldwell
, D. G.
, 2015
, “Dynamics for Variable Length Multisection Continuum Arms
,” Int. J. Rob. Res.
, 35
(6), pp. 695–722.7.
Camarillo
, D. B.
, Milne
, C. F.
, Carlson
, C. R.
, Zinn
, M. R.
, and Salisbury
, J. K.
, 2008
, “Mechanics Modeling of Tendon-Driven Continuum Manipulators
,” IEEE Trans. Rob.
, 24
(6
), pp. 1262
–1273
.8.
Polygerinos
, P.
, Wang
, Z.
, Overvelde
, J. T. B.
, Galloway
, K. C.
, Wood
, R. J.
, Bertoldi
, K.
, and Walsh
, C. J.
, 2015
, “Modeling of Soft Fiber-Reinforced Bending Actuators
,” IEEE Trans. Rob.
, 31
(3
), pp. 778
–789
.9.
Marchese
, A. D.
, and Rus
, D.
, 2015
, “Design, Kinematics, and Control of a Soft Spatial Fluidic Elastomer Manipulator
,” Int. J. Rob. Res.
, 35
(7), pp. 840–869.10.
Bajo
, A.
, and Simaan
, N.
, 2016
, “Hybrid Motion/Force Control of Multi-Backbone Continuum Robots
,” Int. J. Rob. Res.
, 35
(4
), pp. 422
–434
.11.
Renda
, F.
, Cacucciolo
, V.
, Dias
, J.
, and Seneviratne
, L.
, 2016
, “Discrete Cosserat Approach for Soft Robot Dynamics: A New Piece-Wise Constant Strain Model With Torsion and Shears
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Daejeon, South Korea, Oct. 9–14, pp. 5495
–5502
.12.
Brockett
, R. W.
, 1984
, “Robotic Manipulators and the Product of Exponentials Formula
,” Mathematical Theory of Networks and Systems
, Springer
, Berlin
, pp. 120
–129
.13.
Renda
, F.
, Giorelli
, M.
, Calisti
, M.
, Cianchetti
, M.
, and Laschi
, C.
, 2015
, “Dynamic Model of a Multibending Soft Robot Arm Driven by Cables
,” IEEE Trans. Rob.
, 30
(5
), pp. 1109
–1122
.14.
Arezzo
, A.
, Mintz
, Y.
, Allaix
, M. E.
, Gerboni
, G.
, Brancadoro
, M.
, Cianchetti
, M.
, Menciassi
, A.
, Wurdemann
, H.
, Noh
, Y.
, Fras
, Y.
, Glowka
, J.
, Nawrat
, Z.
, Cassidy
, G.
, Walker
, R.
, Arolfo
, S.
, Bonino
, M.
, Morino
, M.
, and Althoefer
, K.
, 2017, “Total Mesorectal Excision Using a Soft and Flexible Robotic Arm: A Feasibility Study in Cadaver Models
,” Surg. Endoscopy
, 31
(1), pp. 264–273.15.
Edwards
, C. H.
, and Penney
, D. E.
, 2013
, “Differential Equations and Linear Algebra
,” Always Learning
, Pearson Education Limited
, Harlow, England.16.
Selig
, J. M.
, 2007
, “Geometric Fundamentals of Robotics
,” Monographs in Computer Science
, Springer
, New York
.17.
Bullo
, F.
, and Murray
, R. M.
, 1995
, “Proportional Derivative (PD) Control on the Euclidean Group
,” European Control Conference
(ECC
), Rome, Italy, Sept. 5–8, pp. 1091
–1097
.18.
Abate
, M.
, and Tovena
, F.
, 2011
, “Geometria Differenziale
,” UNITEXT
, Springer Milan
, Milan, Italy.19.
Murray
, R. M.
, Li
, Z.
, and Sastry
, S. S.
, 1994
, A Mathematical Introduction to Robotic Manipulation
, Taylor & Francis
, CRC Press, Boca Raton, FL.20.
Boyer
, F.
, and Renda
, F.
, 2016
, “Poincaré's Equations for Cosserat Media: Application to Shells
,” J. Nonlinear Sci.
, 27
(1), pp. 1–44.21.
Featherstone
, R.
, 2008
, Rigid Body Dynamics Algorithms
, Springer
, New York.22.
Gibson
, C. G.
, and Hunt
, K. H.
, 1990
, “Geometry of Screw Systems—1: Screws: Genesis and Geometry
,” Mech. Mach. Theory
, 25
(1
), pp. 1
–10
.23.
Wu
, Y.
, Lowe
, H.
, Carricato
, M.
, and Li
, Z.
, 2016
, “Inversion Symmetry of the Euclidean Group: Theory and Application to Robot Kinematics
,” IEEE Trans. Rob.
, 32
(2
), pp. 312
–326
.24.
Brockett
, R. W.
, 1999
, “Explicitly Solvable Control Problems With Nonholonomic Constraints
,” 38th IEEE Conference on Decision and Control
(CDC
), Phoenix, AZ, Dec. 7–10, pp. 13
–16
.25.
Selig
, J. M.
, 2015
, “A Class of Explicitly Solvable Vehicle Motion Problems
,” IEEE Trans. Rob.
, 31
(3
), pp. 766
–777
.Copyright © 2017 by ASME
You do not currently have access to this content.