Modeling large spatial deflections of flexible beams has been one of the most challenging problems in the research community of compliant mechanisms. This work presents a method called chained spatial-beam constraint model (CSBCM) for modeling large spatial deflections of flexible bisymmetric beams in compliant mechanisms. CSBCM is based on the spatial-beam constraint model (SBCM), which was developed for the purpose of accurately predicting the nonlinear constraint characteristics of bisymmetric spatial beams in their intermediate deflection range. CSBCM deals with large spatial deflections by dividing a spatial beam into several elements, modeling each element with SBCM, and then assembling the deflected elements using the transformation defined by Tait–Bryan angles to form the whole deflection. It is demonstrated that CSBCM is capable of solving various large spatial deflection problems either the tip loads are known or the tip deflections are known. The examples show that CSBCM can accurately predict large spatial deflections of flexible beams, as compared to the available nonlinear finite element analysis (FEA) results obtained by ansys. The results also demonstrated the unique capabilities of CSBCM to solve large spatial deflection problems that are outside the range of ansys.

References

1.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
2.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New York
.
3.
Hoover
,
A. M.
, and
Fearing
,
R. S.
,
2009
, “
Analysis of Off-Axis Performance of Compliant Mechanisms With Applications to Mobile Millirobot Design
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
St. Louis, MO
, Oct. 10–15, pp.
2770
2776
.
4.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021005
.
5.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
6.
Su
,
H. J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
7.
Yu
,
Y.-Q.
,
Feng
,
Z.-L.
, and
Xu
,
Q.-P.
,
2012
, “
A Pseudo-Rigid-Body 2R Model of Flexural Beam in Compliant Mechanisms
,”
Mech. Mach. Theory
,
55
(
9
), pp.
18
23
.
8.
Midha
,
A.
,
Her
,
I.
, and
Salamon
,
B.
,
1992
, “
Methodology for Compliant Mechanisms Design: Part I—Introduction and Large-Deflection Analysis
,”
18th Annual ASME Design Automation Conference
,
Scottsdale, AZ
, Sept. 13–16, pp.
29
38
.
9.
Campanile
,
L. F.
, and
Hasse
,
A.
,
2008
, “
A Simple and Effective Solution of the Elastica Problem
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
12
), pp.
2513
2516
.
10.
Banerjee
,
A.
,
Bhattacharya
,
B.
, and
Mallik
,
A. K.
,
2008
, “
Large Deflection of Cantilever Beams With Geometric Non-Linearity: Analytical and Numerical Approaches
,”
Int. J. Non-Linear Mech.
,
43
(
5
), pp.
366
376
.
11.
Tolou
,
N.
, and
Herder
,
J. L.
,
2009
, “
A Seminalytical Approach to Large Deflections in Compliant Beams Under Point Load
,”
Math. Probl. Eng.
,
2009
, p.
910896
.
12.
Lan
,
C. C.
,
2008
, “
Analysis of Large-Displacement Compliant Mechanisms Using an Incremental Linearization Approach
,”
Mech. Mach. Theory
,
43
(
5
), pp.
641
658
.
13.
Kimball
,
C.
, and
Tsai
,
W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary Ends Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
14.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
15.
Kim
,
C.
, and
Ebenstein
,
D.
,
2011
, “
Curve Decomposition for Large Deflection Analysis of Fixed-Guided Beams With Application to Statically Balanced Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041009
.
16.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
17.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1998
, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
392
400
.
18.
Ma
,
F.
, and
Chen
,
G.
,
2014
, “
Chained Beam-Constraint-Model (CBCM): A Powerful Tool for Modeling Large and Complicated Deflections of Flexible Beams in Compliant Mechanisms
,”
ASME
Paper No. DETC2014-34140.
19.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
20.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
,
1971
, “
A Survey of Flexible Link Mechanisms Having Lower Pairs
,”
J. Mech.
,
6
(
1
), pp.
97
105
.
21.
Choueifati
,
J. G.
,
2007
, “
Design and Modeling of a Bistable Spherical Compliant Mechanism
,” Ph.D. thesis, University of South Florida, Tampa, FL.
22.
Parlaktaş
,
V.
, and
Tanık
,
E.
,
2011
, “
Partially Compliant Spatial Slider–Crank (RSSP) Mechanism
,”
Mech. Mach. Theory
,
46
(
5
), pp.
593
606
.
23.
Tanık
,
E.
, and
Parlaktaş
,
V.
,
2011
, “
A New Type of Compliant Spatial Four-Bar (RSSR) Mechanism
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1707
1718
.
24.
Smith
,
C. L.
, and
Lusk
,
C. P.
,
2011
, “
Modeling and Parameter Study of Bistable Spherical Compliant Mechanisms
,”
ASME
Paper No. DETC2011-47397.
25.
Rasmussen
,
N. O.
,
Wittwer
,
J. W.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2006
, “
A 3D Pseudo-Rigid-Body Model for Large Spatial Deflections of Rectangular Cantilever Beams
,”
ASME
Paper No. DETC2006-99465.
26.
Ramirez
,
I.
, and
Lusk
,
C. P.
,
2011
, “
Spatial Beam Large Deflection Equations and Pseudo-Rigid-Body Model for Axisymmetric Cantilever Beams
,”
ASME
Paper No. DETC2011-47389.
27.
Chimento
,
J.
,
Lusk
,
C. P.
, and
Alqasimi
,
A.
,
2014
, “
A 3-D Pseudo-Rigid Body Model for Rectangular Cantilever Beams With an Arbitrary Force End-Load
,”
ASME
Paper No. DETC2014-34292.
28.
Chase
,
R. P.
, Jr.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
A 3-D Chain Algorithm With Pseudo-Rigid-Body Model Elements
,”
Mech. Based Des. Struct. Mach.
,
39
(
1
), pp.
142
156
.
29.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
(
5
), pp.
680
706
.
30.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
31.
Hao
,
G.
,
2013
, “
Simplified PRBMs of Spatial Compliant Multi-Beam Modules for Planar Motion
,”
Mech. Sci.
,
4
(
2
), pp.
311
318
.
32.
Chen
,
G.
, and
Howell
,
L. L.
,
2009
, “
Two General Solutions of Torsional Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
33
(
3
), pp.
268
274
.
33.
Sen
,
S.
,
2013
, “
Beam Constraint Model: Generalized Nonlinear Closed-Form Modeling of Beam Flexures for Flexure Mechanism Design
,” Ph.D. dissertation, The University of Michigan, Ann Arbor, MI.
You do not currently have access to this content.