This paper presents a novel and unified analytic formulation for kinematics, statics, and shape restoration of multiple-backbone continuum robots. These robots achieve actuation redundancy by independently pulling and pushing three backbones to carry out a bending motion of two-degrees-of-freedom (DoF). A solution framework based on constraints of geometric compatibility and static equilibrium is derived using elliptic integrals. This framework allows the investigation of the effects of different external loads and actuation redundancy resolutions on the shape variations in these continuum robots. The simulation and experimental validation results show that these continuum robots bend into an exact circular shape for one particular actuation resolution. This provides a proof to the ubiquitously accepted circular-shape assumption in deriving kinematics for continuum robots. The shape variations due to various actuation redundancy resolutions are also investigated. The simulation results show that these continuum robots have the ability to redistribute loads among their backbones without introducing significant shape variations. A strategy for partially restoring the shape of the externally loaded continuum robots is proposed. The simulation results show that either the tip orientation or the tip position can be successfully restored.

1.
Robinson
,
G.
, and
Davies
,
J. B.
, 1999, “
Continuum Robots—A State of the Art
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Detroit, MI, pp.
2849
2853
.
2.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
, 1992, “
Applying a Flexible Microactuator to Robotic Mechanisms
,”
IEEE Control Syst. Mag.
0272-1708,
12
(
1
), pp.
21
27
.
3.
Suzumori
,
K.
,
Wakimoto
,
S.
, and
Takata
,
M.
, 2003, “
A Miniature Inspection Robot Negotiating Pipes of Widely Varying Diameter
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Taipei, Taiwan, pp.
2735
2740
.
4.
Immega
,
G.
, and
Antonelli
,
K.
, 1995, “
The KSI Tentacle Manipulator
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Nagoya, Aichi, Japan, pp.
3149
3154
.
5.
Lane
,
D. M.
,
Davies
,
J. B. C.
,
Casalino
,
G.
,
Bartolini
,
G.
,
Cannata
,
G.
,
Veruggio
,
G.
,
Canals
,
M.
,
Smith
,
C.
,
O’Brien
,
D. J.
,
Pickett
,
M.
,
Robinson
,
G.
,
Jones
,
D.
,
Scott
,
E.
,
Ferrara
,
A.
,
Angelleti
,
D.
,
Coccoli
,
M.
,
Bono
,
R.
,
Virgili
,
P.
,
Pallas
,
R.
, and
Gracia
,
E.
, 1997, “
AMADEUS: Advanced Manipulation for Deep Underwater Sampling
,”
IEEE Rob. Autom. Mag.
1070-9932,
4
(
4
), pp.
34
45
.
6.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D. M.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
, 2006, “
Field Trials and Testing of the OctArm Continuum Manipulator
,”
IEEE International Conference on Advanced Robotics (ICAR)
, Orlando, FL, pp.
2336
2341
.
7.
Hirose
,
S.
, 1993,
Biologically Inspired Robots, Snake-Like Locomotors and Manipulators
,
Oxford University Press
,
New York
.
8.
Breedveld
,
P.
, and
Hirose
,
S.
, 2001, “
Development of the Endo-periscope for Improvement of Depth Perception in Laparoscopic Surgery
,”
ASME Design Engineering Technical Conferences Computers and Information in Engineering Conference
, Pittsburgh, PA, p.
7
.
9.
Peirs
,
J.
,
Reynaerts
,
D.
,
Van Brussel
,
H.
,
De Gersem
,
G.
, and
Tang
,
H. -W.
, 2003, “
Design of an Advanced Tool Guiding System for Robotic Surgery
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Taipei, Taiwan, pp.
2651
2656
.
10.
Gravagne
,
I. A.
, and
Walker
,
I. D.
, 2000, “
On the Kinematics of Remotely-Actuated Continuum Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
, San Francisco, CA, pp.
2544
2550
.
11.
Simaan
,
N.
,
Taylor
,
R. H.
, and
Flint
,
P.
, 2004, “
A Dexterous System for Laryngeal Surgery
,”
IEEE International Conference on Robotics and Automation (ICRA)
, New Orleans, LA, pp.
351
357
.
12.
Patronik
,
N. A.
,
Zenati
,
M. A.
, and
Riviere
,
C. N.
, 2004, “
Crawling on the Heart: A Mobile Robotics Device for Minimally Invasive Cardiac Interventions
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, St. Malo, France, pp.
9
16
.
13.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
, 1991, “
Development of Flexible Microactuator and Its Applications to Robotic Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Sacramento, CA, pp.
1622
1627
.
14.
Haga
,
Y.
,
Esashi
,
M.
, and
Maeda
,
S.
, 2000, “
Bending, Torsional and Extending Active Catheter Assembled Using Electroplating
,”
International Conference on Micro Electro Mechanical Systems (MEMS)
, Miyazaki, Japan, pp.
181
186
.
15.
Dario
,
P.
,
Paggetti
,
C.
,
Troisfontaine
,
N.
,
Papa
,
E.
,
Ciucci
,
T.
,
Carrozza
,
M. C.
, and
Marcacci
,
M.
, 1997, “
A Miniature Steerable End-Effector for Application in an Integrated System for Computer-Assisted Arthroscopy
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Albuquerque, NM, pp.
1573
1579
.
16.
Asari
,
V. K.
,
Kumar
,
S.
, and
Kassim
,
I. M.
, 2000, “
A Fully Autonomous Microrobotic Endoscopy System
,”
J. Intell. Robotic Syst.
0921-0296,
28
(
4
), pp.
325
341
.
17.
Patronik
,
N. A.
,
Ota
,
T.
,
Zenati
,
M. A.
, and
Riviere
,
C. N.
, 2006, “
Improved Traction for a Mobile Robot Traveling on the Heart
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)
, New York, NY, pp.
339
342
.
18.
Webster
,
R. J.
,
Romano
,
J. M.
, and
Cowan
,
N. J.
, 2009, “
Mechanics of Precurved-Tube Continuum Robots
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
67
78
.
19.
Sears
,
P.
, and
Dupont
,
P. E.
, 2007, “
Inverse Kinematics of Concentric Tube Steerable Needles
,”
IEEE International Conference on Robotics and Automation
, Rome, Italy, pp.
1887
1892
.
20.
Minhas
,
D. S.
,
Engh
,
J. A.
,
Fenske
,
M. M.
, and
Riviere
,
C. N.
, 2007, “
Modeling of Needle Steering Via Duty-Cycled Spinning
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)
, Cité Internationale, Lyon, France, pp.
2756
2759
.
21.
Alterovitz
,
R.
,
Branicky
,
M.
, and
Goldberg
,
K.
, 2008, “
Motion Planning Under Uncertainty for Image-Guided Medical Needle Steering
,”
Int. J. Robot. Res.
0278-3649,
27
(
11–12
), pp.
1361
1374
.
22.
Gravagne
,
I. A.
, and
Walker
,
I. D.
, 2002, “
Manipulability, Force and Compliance Analysis for Planar Continuum Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
3
), pp.
263
273
.
23.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
, 2003, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
2
), pp.
299
307
.
24.
Jones
,
B. A.
, and
Walker
,
I. D.
, 2006, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
22
(
1
), pp.
43
55
.
25.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
, 2004, “
High Dexterity Snake-like Robotic Slaves for Minimally Invasive Telesurgery of the Upper Airway
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, St. Malo, France, pp.
17
24
.
26.
Li
,
C.
, and
Rhan
,
C. D.
, 2002, “
Design of Continuous Backbone, Cable-Driven Robots
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
265
271
.
27.
Nemat-Nasser
,
S.
, and
Guo
,
W. -G.
, 2006, “
Superelastic and Cyclic Response of NiTi SMA at Various Strain Rates and Temperatures
,”
Mech. Mater.
0167-6636,
38
(
5–6
), pp.
463
474
.
28.
Kimball
,
C.
, and
Tsai
,
L. -W.
, 2002, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
223
235
.
29.
Mitchell
,
T. P.
, 1959, “
The Nonlinear Bending of Thin Rods
,”
ASME J. Appl. Mech.
0021-8936,
26
, pp.
40
43
.
30.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
156
165
.
31.
Su
,
H. -J.
, 2009, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
1942-4302,
1
(
2
), p.
021008
.
32.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
625
639
.
33.
Byrd
,
P. F.
, and
Friedman
,
M. D.
, 1971,
Handbook of Elliptic Integrals for Engineers and Scientists
,
Springer-Verlag
,
New York
.
34.
Nocedal
,
J.
, and
Wright
,
S. J.
, 2006,
Numerical Optimization
,
Springer
,
New York
.
35.
Han
,
S. P.
, 1977, “
A Globally Convergent Method for Nonlinear Programming
,”
J. Optim. Theory Appl.
0022-3239,
22
(
3
), pp.
297
309
.
36.
Powell
,
M. J. D.
, 1978, “
A Fast Algorithm for Nonlinearly Constrained Optimization Calculations
,” Numerical Analysis (
Lect. Notes Math.
0075-8434),
630
, pp.
144
157
.
37.
Xu
,
K.
, and
Simaan
,
N.
, 2008, “
An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots
,”
IEEE Trans. Robot.
,
24
(
3
), pp.
576
587
.
38.
Simaan
,
N.
, 2005, “
Snake-Like Units Using Flexible Backbones and Actuation Redundancy for Enhanced Miniaturization
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Barcelona, Spain, pp.
3012
3017
.
39.
Kapoor
,
A.
,
Simaan
,
N.
, and
Taylor
,
R. H.
, 2005, “
Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot
,”
International Conference on Advanced Robotics (IACR)
, Seattle, pp.
452
459
.
40.
Horn
,
B.
, 1986,
Robot Vision
,
MIT Press
,
Boston
.
41.
Xu
,
K.
, and
Simaan
,
N.
, 2006, “
Actuation Compensation for Flexible Surgical Snake-like Robots With Redundant Remote Actuation
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Orlando, FL, pp.
4148
4154
.
42.
Simaan
,
N.
,
Xu
,
K.
,
Kapoor
,
A.
,
Wei
,
W.
,
Kazanzides
,
P.
,
Flint
,
P.
, and
Taylor
,
R. H.
, 2009, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Int. J. Robot. Res.
0278-3649,
28
(
9
), pp.
1134
1153
.
43.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
44.
Aristizábal-Ochoa
,
J. D.
, 2004, “
Large Deflection Stability of Slender Beam-Columns With Semirigid Connections: Elastica Approach
,”
J. Eng. Mech.
0733-9399,
130
(
3
), pp.
274
282
.
You do not currently have access to this content.