This paper shows how to generate underactuated manipulators by substituting nonholonomic spherical pairs for (holonomic) spherical pairs in ordinary (i.e. not underactuated) manipulators. As a case study, an underactuated manipulator, previously proposed by one of the authors, is demonstrated to be generated, through this pair substitution from an inversion of the 6-3 fully parallel manipulator. Moreover, the kinetostatic analysis of this underactuated manipulator is reconsidered, and a simple and compact formulation is obtained. The results of this kinetostatic analysis can be used both in the design of the underactuated manipulator and in its control.
Issue Section:
Research Papers
1.
Shammas
, E. A.
, Choset
, H.
, and Rizzi
, A. A.
, 2007, “Towards a Unified Approach to Motion Planning for Dynamic Underactuated Mechanical Systems With Non-Holonomic Constraints
,” Int. J. Robot. Res.
0278-3649, 26
(10
), pp. 1075
–1124
.2.
Hussein
, I. I.
, and Bloch
, A. M.
, 2008, “Optimal Control of Underactuated Nonholonomic Mechanical Systems
,” IEEE Trans. Autom. Control
0018-9286, 53
(3
), pp. 668
–682
.3.
De Luca
, A.
, Oriolo
, G.
, and Robuffo-Giordano
, P.
, 2007, “Image-Based Visual Serving Schemes for Nonholonomic Mobile Manipulators
,” Robotica
0263-5747, 25
, pp. 131
–145
.4.
Duleba
, I.
, and Khefifi
, W.
, 2007, “Velocity Space Approach to Motion Planning of Nonholonomic Systems
,” Robotica
0263-5747, 25
, pp. 359
–366
.5.
Angeles
, J.
, 2003, Fundamentals of Robotic Mechanical Systems
, Springer-Verlag
, New York
.6.
O'Reilly
, O. M.
, 2008, Intermediate Dynamics for Engineers
, Cambridge University Press
, New York
.7.
Stammers
, C. W.
, Prest
, P. H.
, and Mobley
, C. G.
, 1992, “A Friction Drive Robot Wrist: Electronic and Control Requirements
,” Mechatronics
0957-4158, 2
(4
), pp. 391
–401
.8.
Peshkin
, M.
, Colgate
, J. E.
, and Moore
, C.
, 1996, “Passive Robots and Haptic Displays Based on Nonholonomic Elements
,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation
, pp. 551
–556
.9.
Nakamura
, Y.
, Chung
, W.
, and Sørdalen
, O. J.
, 2001, “Design and Control of the Nonholonomic Manipulator
,” IEEE Trans. Rob. Autom.
1042-296X, 17
(1
), pp. 48
–59
.10.
Ben-Horin
, P.
, and Thomas
, F.
, 2008, “A Nonholonomic 3-Motor Parallel Robot
,” Advances in Robot Kinematics
, J.
Lenarcic
and P.
Wenger
, eds., Springer-Verlag
, Berlin
.11.
Hennessey
, M. P.
, 2006, “Visualizing the Motion of a Unicycle on a Sphere
,” Int. J. Model. Simulat.
0228-6203, 26
(1
), pp. 69
–79
.12.
Lu
, Y.
, Shi
, Y.
, Li
, S. -H.
, and Tian
, X. -B.
, 2008, “Synthesis and Analysis of Kinematics/Statics of a Novel 2SP̱S+SP̱R+SP Parallel Manipulator
,” J. Mech. Des.
1050-0472, 130
, pp. 092302
-1–092302-8
.13.
Tahmasebi
, F.
, 2007, “Kinematics of a New High-Precision Three-Degree-of-Freedom Parallel Manipulator
,” J. Mech. Des.
1050-0472, 129
, pp. 320
–325
.14.
Gallardo-Alvarado
, J.
, Orozco-Mendoza
, H.
, and Maeda-Sánchez
, A.
, 2007, “Acceleration and Singularity Analyses of a Parallel Manipulator With a Particular Topology
,” Meccanica
0025-6455, 42
, pp. 223
–238
.15.
Innocenti
, C.
, and Parenti-Castelli
, V.
, 1994, “Exhaustive Enumeration of Fully-Parallel Kinematic Chains
,” Proceedings of the 1994 ASME International Winter Annual Meeting
, Vol. 55-2
, pp. 1135
–1141
.16.
Stewart
, D.
, 1965, “A Platform With Six Degrees of Freedom
,” Proceedings of the Institution of Mechanical Engineers
, Vol. 180-5
, pp. 371
–378
.17.
Innocenti
, C.
, and Parenti-Castelli
, V.
, 1990, “Direct Position Analysis of the Stewart Platform Mechanism
,” Mech. Mach. Theory
0094-114X, 25
(6
), pp. 611
–621
.18.
Parenti-Castelli
, V.
, and Di Gregorio
, R.
, 1996, “Closed-Form Solution of the Direct Kinematics of the 6-3 Type Stewart Platform Using One Extra Sensor
,” Meccanica
0025-6455, 31
, pp. 705
–711
.19.
Ji
, C. -Y.
, Chen
, T. -C.
, and Lee
, Y. -L.
, 2007, “Investigation of Kinematic Analysis and Applications for a 3-RRPS Parallel Manipulator
,” J. Chin. Soc. Mech. Eng.
0257-9731, 28
(6
), pp. 623
–632
.20.
Sokolov
, A.
, and Xirouchakis
, P.
, 2007, “Dynamics Analysis of a 3-DOF Parallel Manipulator With R–P–S Joint Structure
,” Mech. Mach. Theory
0094-114X, 42
, pp. 541
–557
.21.
Farhat
, N.
, Mata
, V.
, Page
, À.
, and Valero
, F.
, 2008, “Identification of Dynamic Parameters of a 3-DOF RPS Parallel Manipulator
,” Mech. Mach. Theory
0094-114X, 43
, pp. 1
–17
.22.
Rao
, N. M.
, and Rao
, K. M.
, 2009, “Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator for a Prescribed Range of Motion of Spherical Joints
,” Mech. Mach. Theory
0094-114X, 44
, pp. 477
–486
.23.
Gosselin
, C. M.
, and Angeles
, J.
, 1990, “Singularity Analysis of Closed-Loop Kinematic Chain
,” IEEE Trans. Rob. Autom.
1042-296X, 6
(3
), pp. 281
–290
.24.
Ma
, O.
, and Angeles
, J.
, 1991, “Architecture Singularities of Platform Manipulators
,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation
, pp. 1542
–1547
.25.
Zlatanov
, D.
, Fenton
, R. G.
, and Benabib
, B.
, 1995, “A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,” ASME J. Mech. Des.
0161-8458, 117
(4
), pp. 566
–572
.26.
Di Gregorio
, R.
, 2008, “An Exhaustive Scheme for the Singularity Analysis of Three-DOF Parallel Manipulators
,” Proceedings of the 17th International Workshop on Robotics in Alpe-Adria-Danube Region
, Ancona, Italy.27.
Choset
, H.
, Lynch
, K. M.
, Hutchinson
, S.
, Kantor
, G.
, Burgard
, W.
, Kavraki
, L. E.
, and Thrun
, S.
, 2005, Principles of Robot Motion: Theory, Algorithms, and Implementations
, MIT
, Boston
.28.
Murray
, R. M.
, Li
, Z.
, and Sastry
, S. S.
, 1994, A Mathematical Introduction to Robotic Manipulation
, CRC
, Boca Raton, FL
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.