This paper shows how to generate underactuated manipulators by substituting nonholonomic spherical pairs for (holonomic) spherical pairs in ordinary (i.e. not underactuated) manipulators. As a case study, an underactuated manipulator, previously proposed by one of the authors, is demonstrated to be generated, through this pair substitution from an inversion of the 6-3 fully parallel manipulator. Moreover, the kinetostatic analysis of this underactuated manipulator is reconsidered, and a simple and compact formulation is obtained. The results of this kinetostatic analysis can be used both in the design of the underactuated manipulator and in its control.

1.
Shammas
,
E. A.
,
Choset
,
H.
, and
Rizzi
,
A. A.
, 2007, “
Towards a Unified Approach to Motion Planning for Dynamic Underactuated Mechanical Systems With Non-Holonomic Constraints
,”
Int. J. Robot. Res.
0278-3649,
26
(
10
), pp.
1075
1124
.
2.
Hussein
,
I. I.
, and
Bloch
,
A. M.
, 2008, “
Optimal Control of Underactuated Nonholonomic Mechanical Systems
,”
IEEE Trans. Autom. Control
0018-9286,
53
(
3
), pp.
668
682
.
3.
De Luca
,
A.
,
Oriolo
,
G.
, and
Robuffo-Giordano
,
P.
, 2007, “
Image-Based Visual Serving Schemes for Nonholonomic Mobile Manipulators
,”
Robotica
0263-5747,
25
, pp.
131
145
.
4.
Duleba
,
I.
, and
Khefifi
,
W.
, 2007, “
Velocity Space Approach to Motion Planning of Nonholonomic Systems
,”
Robotica
0263-5747,
25
, pp.
359
366
.
5.
Angeles
,
J.
, 2003,
Fundamentals of Robotic Mechanical Systems
,
Springer-Verlag
,
New York
.
6.
O'Reilly
,
O. M.
, 2008,
Intermediate Dynamics for Engineers
,
Cambridge University Press
,
New York
.
7.
Stammers
,
C. W.
,
Prest
,
P. H.
, and
Mobley
,
C. G.
, 1992, “
A Friction Drive Robot Wrist: Electronic and Control Requirements
,”
Mechatronics
0957-4158,
2
(
4
), pp.
391
401
.
8.
Peshkin
,
M.
,
Colgate
,
J. E.
, and
Moore
,
C.
, 1996, “
Passive Robots and Haptic Displays Based on Nonholonomic Elements
,”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation
, pp.
551
556
.
9.
Nakamura
,
Y.
,
Chung
,
W.
, and
Sørdalen
,
O. J.
, 2001, “
Design and Control of the Nonholonomic Manipulator
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
1
), pp.
48
59
.
10.
Ben-Horin
,
P.
, and
Thomas
,
F.
, 2008, “
A Nonholonomic 3-Motor Parallel Robot
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
P.
Wenger
, eds.,
Springer-Verlag
,
Berlin
.
11.
Hennessey
,
M. P.
, 2006, “
Visualizing the Motion of a Unicycle on a Sphere
,”
Int. J. Model. Simulat.
0228-6203,
26
(
1
), pp.
69
79
.
12.
Lu
,
Y.
,
Shi
,
Y.
,
Li
,
S. -H.
, and
Tian
,
X. -B.
, 2008, “
Synthesis and Analysis of Kinematics/Statics of a Novel 2SP̱S+SP̱R+SP Parallel Manipulator
,”
J. Mech. Des.
1050-0472,
130
, pp.
092302
-1–092302-
8
.
13.
Tahmasebi
,
F.
, 2007, “
Kinematics of a New High-Precision Three-Degree-of-Freedom Parallel Manipulator
,”
J. Mech. Des.
1050-0472,
129
, pp.
320
325
.
14.
Gallardo-Alvarado
,
J.
,
Orozco-Mendoza
,
H.
, and
Maeda-Sánchez
,
A.
, 2007, “
Acceleration and Singularity Analyses of a Parallel Manipulator With a Particular Topology
,”
Meccanica
0025-6455,
42
, pp.
223
238
.
15.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1994, “
Exhaustive Enumeration of Fully-Parallel Kinematic Chains
,”
Proceedings of the 1994 ASME International Winter Annual Meeting
, Vol.
55-2
, pp.
1135
1141
.
16.
Stewart
,
D.
, 1965, “
A Platform With Six Degrees of Freedom
,”
Proceedings of the Institution of Mechanical Engineers
, Vol.
180-5
, pp.
371
378
.
17.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1990, “
Direct Position Analysis of the Stewart Platform Mechanism
,”
Mech. Mach. Theory
0094-114X,
25
(
6
), pp.
611
621
.
18.
Parenti-Castelli
,
V.
, and
Di Gregorio
,
R.
, 1996, “
Closed-Form Solution of the Direct Kinematics of the 6-3 Type Stewart Platform Using One Extra Sensor
,”
Meccanica
0025-6455,
31
, pp.
705
711
.
19.
Ji
,
C. -Y.
,
Chen
,
T. -C.
, and
Lee
,
Y. -L.
, 2007, “
Investigation of Kinematic Analysis and Applications for a 3-RRPS Parallel Manipulator
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
28
(
6
), pp.
623
632
.
20.
Sokolov
,
A.
, and
Xirouchakis
,
P.
, 2007, “
Dynamics Analysis of a 3-DOF Parallel Manipulator With R–P–S Joint Structure
,”
Mech. Mach. Theory
0094-114X,
42
, pp.
541
557
.
21.
Farhat
,
N.
,
Mata
,
V.
,
Page
,
À.
, and
Valero
,
F.
, 2008, “
Identification of Dynamic Parameters of a 3-DOF RPS Parallel Manipulator
,”
Mech. Mach. Theory
0094-114X,
43
, pp.
1
17
.
22.
Rao
,
N. M.
, and
Rao
,
K. M.
, 2009, “
Dimensional Synthesis of a Spatial 3-RPS Parallel Manipulator for a Prescribed Range of Motion of Spherical Joints
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
477
486
.
23.
Gosselin
,
C. M.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chain
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
24.
Ma
,
O.
, and
Angeles
,
J.
, 1991, “
Architecture Singularities of Platform Manipulators
,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation
, pp.
1542
1547
.
25.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benabib
,
B.
, 1995, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
0161-8458,
117
(
4
), pp.
566
572
.
26.
Di Gregorio
,
R.
, 2008, “
An Exhaustive Scheme for the Singularity Analysis of Three-DOF Parallel Manipulators
,”
Proceedings of the 17th International Workshop on Robotics in Alpe-Adria-Danube Region
, Ancona, Italy.
27.
Choset
,
H.
,
Lynch
,
K. M.
,
Hutchinson
,
S.
,
Kantor
,
G.
,
Burgard
,
W.
,
Kavraki
,
L. E.
, and
Thrun
,
S.
, 2005,
Principles of Robot Motion: Theory, Algorithms, and Implementations
,
MIT
,
Boston
.
28.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.