Abstract

Research in quadrupedal robotics is transitioning to studies into loco-manipulation, featuring fully articulated robotic arms mounted atop these robots. Integrating such arms enhances the practical utility of legged robots, paving the way for expanded applications like industrial inspection and search and rescue. Existing literature commonly employs a six-degree-of-freedom (six-DoF) arm directly mounted to the robot, which inherently adds significant weight and reduces the available payload for manipulation tasks. Our study explores an optimized combination of arm configuration and control framework by strategically reducing the DoFs and leveraging the quadruped robot’s inherent agile mobility. We demonstrate that by minimizing the DoFs to just one, a range of canonical loco-manipulation tasks can still be accomplished. Some tasks even show improved performance with fewer robotic arm DoFs due to the higher torque motor used in the design, allowing more of the robot’s payload to be used for manipulation. We designed our optimized one-DoF robotic arm and the control framework and tested it on top of a Unitree Aliengo. Our design outperforms conventional six-DoF counterparts in lifting capacity, achieving an impressive 8 kg payload compared to the 2 kg maximum payload of industry-standard six-DoF robotic arms on the same quadruped platform.

References

1.
Sandakalum
,
T.
, and
Ang Jr
,
M. H.
,
2022
, “
Motion Planning for Mobile Manipulators—A Systematic Review
,”
Machines
,
10
(
2
), p.
97
.
2.
Thakar
,
S.
,
Srinivasan
,
S.
,
Al-Hussaini
,
S.
,
Bhatt
,
P. M.
,
Rajendran
,
P.
,
Jung Yoon
,
Y.
,
Dhanaraj
,
N.
, et al.,
2023
, “
A Survey of Wheeled Mobile Manipulation: A Decision-Making Perspective
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
020801
.
3.
Song
,
T.
,
Xi
,
F. J.
,
Guo
,
S.
, and
Lin
,
Y.
,
2016
, “
Optimization of a Mobile Platform for a Wheeled Manipulator
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061007
.
4.
Ben-Tzvi
,
P.
, and
Saab
,
W.
,
2019
, “
A Hybrid Tracked-Wheeled Multi-Directional Mobile Robot
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041008
.
5.
Di Carlo
,
J.
,
Wensing
,
P. M.
,
Katz
,
B.
,
Bledt
,
G.
, and
Kim
,
S.
,
2018
, “
Dynamic Locomotion in the Mit Cheetah 3 Through Convex Model-Predictive Control
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
1
9
.
6.
Sombolestan
,
M.
,
Chen
,
Y.
, and
Nguyen
,
Q.
,
2021
, “
Adaptive Force-Based Control for Legged Robots
,”
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, IEEE, pp.
7440
7447
.
7.
Miki
,
T.
,
Lee
,
J.
,
Hwangbo
,
J.
,
Wellhausen
,
L.
,
Koltun
,
V.
, and
Hutter
,
M.
,
2022
, “
Learning Robust Perceptive Locomotion for Quadrupedal Robots in the Wild
,”
Sci. Rob.
,
7
(
62
), p.
eabk2822
.
8.
Chen
,
Y.
,
Lian
,
L.
,
Hsieh
,
Y.-H.
,
Nguyen
,
Q.
, and
Gupta
,
S. K.
,
2023
, “
Informed Sampling-Based Planning to Enable Legged Robots to Safely Negotiate Permeable Obstacles
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051002
.
9.
Harada
,
K.
,
Kajita
,
S.
,
Kaneko
,
K.
, and
Hirukawa
,
H.
,
2006
, “
Dynamics and Balance of a Humanoid Robot During Manipulation Tasks
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
568
575
.
10.
Gams
,
A.
,
Petrič
,
T.
,
Nemec
,
B.
, and
Ude
,
A.
,
2022
, “
Manipulation Learning on Humanoid Robots
,”
Curr. Rob. Rep.
,
3
(
3
), pp.
97
109
.
11.
Li
,
J.
,
Ma
,
J.
,
Kolt
,
O.
,
Shah
,
M.
, and
Nguyen
,
Q.
,
2023
,
Dynamic Loco-Manipulation on HECTOR: Humanoid for Enhanced ConTrol and Open-Source Research
.
12.
Li
,
J.
, and
Nguyen
,
Q.
,
2023
, “
Multi-Contact MPC for Dynamic Loco-Manipulation on Humanoid Robots
,”
2023 IEEE American Control Conference (ACC)
,
San Diego, CA
,
May 31–June 2
, IEEE, pp.
1215
1220
.
13.
Polverini
,
M. P.
,
Laurenzi
,
A.
,
Hoffman
,
E. M.
,
Ruscelli
,
F.
, and
Tsagarakis
,
N. G.
,
2020
, “
Multi-contact Heavy Object Pushing With a Centaur-Type Humanoid Robot: Planning and Control for a Real Demonstrator
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
859
866
.
14.
Rigo
,
A.
,
Chen
,
Y.
,
Gupta
,
S. K.
, and
Nguyen
,
Q.
,
2023
, “
Contact Optimization for Non-prehensile Loco-manipulation Via Hierarchical Model Predictive Control
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29– June 2
, pp.
9945
9951
.
15.
Sombolestan
,
M.
, and
Nguyen
,
Q.
,
2023
, “
Hierarchical Adaptive Loco-manipulation Control for Quadruped Robots
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, IEEE, pp.
12156
12162
.
16.
Kim
,
J.-Y.
, and
Jun
,
B.-H.
,
2014
, “
Design of Six-Legged Walking Robot, Little Crabster for Underwater Walking and Operation
,”
Adv. Rob.
,
28
(
2
), pp.
77
89
.
17.
Arm
,
P.
,
Mittal
,
M.
,
Kolvenbach
,
H.
, and
Hutter
,
M.
,
2024
, “
Pedipulate: Enabling Manipulation Skills Using a Quadruped Robot’s leg
,”
IEEE Conference on Robotics and Automation (ICRA)
,
Yokohama, Japan
,
May 13–17
.
18.
Xin
,
G.
,
Zeng
,
F.
, and
Qin
,
K.
,
2022
, “
Loco-Manipulation Control for Arm-Mounted Quadruped Robots: Dynamic and Kinematic Strategies
,”
Machines
,
10
(
8
), p.
719
.
19.
Ferrolho
,
H.
,
Ivan
,
V.
,
Merkt
,
W.
,
Havoutis
,
I.
, and
Vijayakumar
,
S.
,
2023
, “
Roloma: Robust Loco-Manipulation for Quadruped Robots with Arms
,”
Auto. Rob.
,
47
(
8
), pp.
1463
1481
.
20.
Cao
,
Z.
,
Chen
,
H.
,
Li
,
S.
, and
Zhang
,
W.
,
2023
, “
Real-Time Collision-Free Motion Planning and Control for Mobile Manipulation With Quadrupeds
,”
2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Samui, Thailand
,
Dec. 4–9
, IEEE, pp.
1
8
.
21.
Zimmermann
,
S.
,
Poranne
,
R.
, and
Coros
,
S.
,
2021
, “
Go Fetch!-Dynamic Grasps Using Boston Dynamics Spot With External Robotic Arm
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
, IEEE, pp.
4488
4494
.
22.
Ferrolho
,
H.
,
Merkt
,
W.
,
Ivan
,
V.
,
Wolfslag
,
W.
, and
Vijayakumar
,
S.
,
2020
, “
Optimizing Dynamic Trajectories for Robustness to Disturbances Using Polytopic Projections
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
, IEEE, pp.
7477
7484
.
23.
Ma
,
Y.
,
Farshidian
,
F.
,
Miki
,
T.
,
Lee
,
J.
, and
Hutter
,
M.
,
2022
, “
Combining Learning-Based Locomotion Policy With Model-Based Manipulation for Legged Mobile Manipulators
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
2377
2384
.
24.
Bellicoso
,
C. D.
,
Krämer
,
K.
,
Stäuble
,
M.
,
Sako
,
D.
,
Jenelten
,
F.
,
Bjelonic
,
M.
, and
Hutter
,
M.
,
2019
, “
Alma-Articulated Locomotion and Manipulation for a Torque-Controllable Robot
,”
2019 IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, IEEE, pp.
8477
8483
.
25.
Ewen
,
P.
,
Sleiman
,
J.-P.
,
Chen
,
Y.
,
Lu
,
W.-C.
,
Hutter
,
M.
, and
Vasudevan
,
R.
,
2021
, “
Generating Continuous Motion and Force Plans in Real-Time for Legged Mobile Manipulation
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
, IEEE, pp.
4933
4939
.
26.
Sleiman
,
J.-P.
,
Farshidian
,
F.
,
Minniti
,
M. V.
, and
Hutter
,
M.
,
2021
, “
A Unified MPC Framework for Whole-Body Dynamic Locomotion and Manipulation
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
4688
4695
.
27.
Chiu
,
J.-R.
,
Sleiman
,
J.-P.
,
Mittal
,
M.
,
Farshidian
,
F.
, and
Hutter
,
M.
,
2022
, “
A Collision-Free MPC for Whole-Body Dynamic Locomotion and Manipulation
,”
2022 IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, pp.
4686
4693
.
28.
Sleiman
,
J.-P.
,
Farshidian
,
F.
, and
Hutter
,
M.
,
2023
, “
Versatile Multicontact Planning and Control for Legged Loco-Manipulation
,”
Sci. Rob.
,
8
(
81
), p.
eadg5014
.
29.
Rigo
,
A.
,
Hu
,
M.
,
Gupta
,
S. K.
, and
Nguyen
,
Q.
,
2024
, “
Hierarchical Optimization-Based Control for Whole-Body Loco-Manipulation of Heavy Objects
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Yokohama, Japan
,
May 13–17
.
30.
Li
,
J.
, and
Nguyen
,
Q.
,
2023
, “
Kinodynamic Pose Optimization for Humanoid Loco-manipulation
,”
2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids)
,
Austin, TX
,
Dec. 12–14
, pp.
1
8
.
You do not currently have access to this content.