Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article explores the synthesis of a planar overconstrained mechanism potentially for a folding hinge application. Inspired by a folding hinge patent from a phone company, the author analyzes the linkage and discovers a special mechanism generated by merging two symmetric Watt’s six-bar linkages. The synthesis method involves finding a Watt’s six-bar linkage with gear-like input–output motion. The differential evolution optimization algorithm is used to determine the dimensions of the linkage that satisfy the synchronized motion. Numerical results demonstrate the successful synthesis of the overconstrained mechanism with extremely low error, validating its performance. The CAD model and prototyping further confirm its functionality. This article makes three significant contributions: First, it synthesizes a Watt’s six-bar linkage that performs approximate gear-like motion for the first time. Second, it introduces a novel planar overconstrained mechanism and presents a methodology for its synthesis. Finally, it proposes a potential design for synthesizing and implementing overconstrained mechanisms in foldable phone hinges, meeting requirements for compactness and durability.

References

1.
Kim
,
J.
, and
Kim
,
H.
,
2022
, “Hinge Structure and Electronic Device Including the Same,” US Patent US 11385687 B1.
2.
張前, 鄭澤寬, and 史長春
, China Patent CN 112333308A, Feb. 2021, “Folding Device, Folding Machine Shell and Mobile Terminal.”
3.
Hong
,
S. C.
, and
Kim
,
C. S.
,
2022
, “Portable Terminal Hinge Having Foldable Structure,” International Application WO2022119360A1.
4.
加藤秀夫, 長井賢次, 鄒亞科, 彭運輝, and 李灝
, China Patent CN 114584638A, Jun. 2020, “Rotating Shaft Mechanism and Mobile Terminal.”
5.
Norton
,
R.
,
2008
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, 4th ed.,
McGraw-Hill
,
New York
.
6.
Simionescu
,
P.
, and
Smith
,
M.
,
2000
, “
Applications of Watt II Function Generator Cognates
,”
Mech. Mach. Theory.
,
35
(
11
), pp.
1535
1549
.
7.
Grübler
,
M. F.
,
1917
,
Getriebelehre: Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen
,
Springer
,
Berlin, Germany
.
8.
Kutzbach
,
K.
,
1929
, “
Mechanische Leitungsverzweigung, Ihre Gesetze Und Anwendungen
,”
Maschinenbau
,
8
(
21
), pp.
710
716
.
9.
Sarrus
,
P.
,
1853
, “
Note Sur La Transformation Des Mouvements Rectilignes Alternatifs, En Mouvements Circulaires, Et Reciproquement
,”
Comptes. Rendus, Acad. Sci., Paris
,
36
, pp.
1036
1038
.
10.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
11.
Bennett
,
G. T.
,
1905
, “
The Parallel Motion of Sarrut and Some Allied Mechanisms
,”
Lond., Edinb., Dublin Philos. Mag. J. Sci.
,
9
(
54
), pp.
803
810
.
12.
Bricard
,
R.
,
1926
,
Leçons De Cinématique
, Vol.
1
,
Gauthier-Villars
,
Paris, France
.
13.
Myard
,
F.
,
1931
, “
Sur Les Chaînes Fermées à Quatre Couples Rotoïdes Non Concourants, Déformables Au Premier Degré De Liberté. Isogramme Torique
,”
Compterendus de l’Acadèmie de Science
,
59
, pp.
183
210
.
14.
Myard
,
F.
,
1931
, “
Contribution à La Géométrie Des Systèmes Articulés
,”
Bull. de la Soc. Math. de France
,
59
, pp.
183
210
.
15.
Goldberg
,
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Trans. Am. Soc. Mech. Eng.
,
65
(
6
), pp.
649
656
.
16.
Franke
,
R.
,
1958
,
Vom Aufbau Der Getriebe: Eine Neue, Die Getriebe Aller Technischen Gebiete Einheitlich Zusammenfassende Lehre Für Konstrukteure Und Studenten
, Vol.
1
,
VDI-verlag
,
Düsseldorf, Germany
.
17.
Harrisberger
,
L.
,
1965
, “
A Number Synthesis Survey of Three-Dimensional Mechanisms
,”
J. Eng. Ind.
,
87
(
2
), pp.
213
218
.
18.
Waldron
,
K.
,
1968
, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.
19.
Schatz
,
P.
,
1975
,
Rhythmusforschung Und Technik
,
Verlag Freies Geistesleben
,
Stuttgart, Germany
.
20.
Hon-Cheung
,
Y.
, and
Baker
,
J. E.
,
1981
, “
On the Generation of New Linkages From Bennett Loops
,”
Mech. Mach. Theory.
,
16
(
5
), pp.
473
485
.
21.
Baker
,
J. E.
,
1979
, “
The Bennett, Goldberg and Myard Linkages—In Perspective
,”
Mech. Mach. Theory.
,
14
(
4
), pp.
239
253
.
22.
Wohlhart
,
K.
,
1991
, “
Merging Two General Goldberg 5r Linkages to Obtain a New 6r Space Mechanism
,”
Mech. Mach. Theory.
,
26
(
7
), pp.
659
668
.
23.
Lee
,
C.-C.
, and
Yan
,
H.-S.
,
1993
, “
Movable Spatial 6R Mechanisms With Three Adjacent Parallel Axes
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
522
529
.
24.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
Analysis of Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
69
74
.
25.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
New and Revised Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
75
82
.
26.
Song
,
C.
, and
Chen
,
Y.
,
2011
, “
A Spatial 6r Linkage Derived From Subtractive Goldberg 5r Linkages
,”
Mech. Mach. Theory.
,
46
(
8
), pp.
1097
1106
.
27.
Song
,
C.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2013
, “
A 6r Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory.
,
70
, pp.
278
292
.
28.
Pamidi
,
P. R.
,
Soni
,
A. H.
, and
Dukkipati
,
R. V.
,
1973
, “
Necessary and Sufficient Existence Criteria of Overconstrained Five-Link Spatial Mechanisms With Helical, Cylinder, Revolute, and Prism Pairs
,”
J. Eng. Ind.
,
95
(
3
), pp.
737
743
.
29.
Baker
,
J.
,
1981
, “
The S-h-h-h- Linkage
,”
Mech. Mach. Theory.
,
16
(
6
), pp.
599
609
.
30.
Baker
,
J.
,
1996
, “
On 5-Revolute Kinematic Loops With Intersecting Adjacent Joint Axes
,”
Mech. Mach. Theory.
,
31
(
8
), pp.
1167
1183
.
31.
Baker
,
J. E.
,
2003
, “
Overconstrained Six-Bars With Parallel Adjacent Joint-Axes
,”
Mech. Mach. Theory.
,
38
(
2
), pp.
103
117
.
32.
Huang
,
C.
, and
Sun
,
C.-C.
,
1999
, “
An Investigation of Screw Systems in the Finite Displacements of Bennett-Based 6R Linkages
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
426
430
.
33.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2004
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
34.
Li
,
Z.
, and
Schicho
,
J.
,
2013
, “
Classification of Angle-Symmetric 6r Linkages
,”
Mech. Mach. Theory.
,
70
, pp.
372
379
.
35.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory.
,
74
, pp.
1
9
.
36.
Pfurner
,
M.
,
Kong
,
X.
, and
Huang
,
C.
,
2014
, “
Complete Kinematic Analysis of Single-Loop Multiple-Mode 7-Link Mechanisms Based on Bennett and Overconstrained RPRP Mechanisms
,”
Mech. Mach. Theory.
,
73
, pp.
117
129
.
37.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), p.
062303
.
38.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
, and
Molfino
,
R.
,
2014
, “
A New Family of Deployable Mechanisms Based on the Hoekens Linkage
,”
Mech. Mach. Theory.
,
73
, pp.
130
153
.
39.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Molfino
,
R.
, and
Zoppi
,
M.
,
2016
, “
Novel Deployable Mechanisms With Decoupled Degrees-of-Freedom
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021008
.
40.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
.
41.
Ramadoss
,
V.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Lyu
,
S.
,
2019
, “
Design, Construction, and Control of Curves and Surfaces Via Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061008
.
42.
Hsu
,
K.-L.
, and
Ting
,
K.-L.
,
2018
, “
Overconstrained Mechanisms Derived From Rprp Loops
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062301
.
43.
Lee
,
F.-H.
, and
Hsu
,
K.-L.
,
2022
, “
A Synthesis Method of Spatial Over-Constrained Mechanisms Based on Kinematics of Serial Manipulators
,”
Robotica
,
40
(
12
), pp.
4193
4217
.
44.
Hsu
,
K.-L.
, and
Chung
,
C.-H.
,
2023
, “
Singularity Analysis and Modular Synthesis of Over-Constrained Spatial Mechanisms—A Case Study on Bennett and RPRP Linkage
,”
Mech. Mach. Theory.
,
189
, p.
105424
.
45.
Dijksman
,
E. A.
,
1994
, “
Assembling Complete Pole Configurations for (Over)Constrained Planar Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
215
225
.
46.
Simionescu
,
P.
, and
Smith
,
M.
,
2001
, “
Four- and Six-Bar Function Cognates and Overconstrained Mechanisms
,”
Mech. Mach. Theory.
,
36
(
8
), pp.
913
924
.
47.
Erdman
,
A.
, and
Sandor
,
G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
48.
Plecnik
,
M. M.
, and
Michael McCarthy
,
J.
,
2016
, “
Computational Design of Stephenson II Six-bar Function Generators for 11 Accuracy Points
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011017
.
49.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Kinematic Synthesis of Stephenson III Six-Bar Function Generators
,”
Mech. Mach. Theory.
,
97
, pp.
112
126
.
50.
Kelaiaia
,
R.
,
Chemori
,
A.
,
Brahmia
,
A.
,
Kerboua
,
A.
,
Zaatri
,
A.
, and
Company
,
O.
,
2023
, “
Optimal Dimensional Design of Parallel Manipulators With an Illustrative Case Study: A Review
,”
Mech. Mach. Theory.
,
188
, p.
105390
.
51.
Brahmia
,
A.
,
Kerboua
,
A.
,
Kelaiaia
,
R.
, and
Latreche
,
A.
,
2023
, “
Tolerance Synthesis of Delta-Like Parallel Robots Using a Nonlinear Optimisation Method
,”
Appl. Sci.
,
13
(
19
), p.
10703
.
52.
Kang
,
Y.-H.
,
Lin
,
J.-W.
, and
You
,
W.-C.
,
2022
, “
Comparative Study on the Synthesis of Path-Generating Four-Bar Linkages Using Metaheuristic Optimization Algorithms
,”
Appl. Sci.
,
12
(
15
), p.
7368
.
53.
Bakthavachalam
,
N.
, and
Kimbrell
,
J. T.
,
1975
, “
Optimum Synthesis of Path-Generating Four-Bar Mechanisms
,”
J. Eng. Ind.
,
97
(
1
), pp.
314
321
.
54.
Sancibrian
,
R.
,
García
,
P.
,
Viadero
,
F.
, and
Fernández
,
A.
,
2006
, “
A General Procedure Based on Exact Gradient Determination in Dimensional Synthesis of Planar Mechanisms
,”
Mech. Mach. Theory.
,
41
(
2
), pp.
212
229
.
55.
Hernández
,
A.
,
Muñoyerro
,
A.
,
Urízar
,
M.
, and
Amezua
,
E.
,
2021
, “
Comprehensive Approach for the Dimensional Synthesis of a Four-Bar Linkage Based on Path Assessment and Reformulating the Error Function
,”
Mech. Mach. Theory.
,
156
, p.
104126
.
56.
Angeles
,
J.
,
Alivizatoss
,
A.
, and
Akhras
,
R.
,
1988
, “
An Unconstrained Nonlinear Least-Square Method of Optimization of RRRR Planar Path Generators
,”
Mech. Mach. Theory.
,
23
(
5
), pp.
343
353
.
57.
Smaili
,
A. A.
,
Diab
,
N. A.
, and
Atallah
,
N. A.
,
2004
, “
Optimum Synthesis of Mechanisms Using Tabu-Gradient Search Algorithm
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
917
923
.
58.
Smaili
,
A.
, and
Diab
,
N.
,
2005
, “
A New Approach to Shape Optimization for Closed Path Synthesis of Planar Mechanisms
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
941
948
.
59.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95 - International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec.1
, pp.
1942
1948
.
60.
Bulatović
,
R. R.
,
DJorðević
,
S. R.
, and
DJorðević
,
V. S.
,
2013
, “
Cuckoo Search Algorithm: A Metaheuristic Approach to Solving the Problem of Optimum Synthesis of a Six-Bar Double Dwell Linkage
,”
Mech. Mach. Theory.
,
61
, pp.
1
13
.
61.
Gandomi
,
A. H.
, and
Alavi
,
A. H.
,
2012
, “
Krill Herd: A New Bio-Inspired Optimization Algorithm
,”
Commun. Nonlinear Sci. Numerical Simul.
,
17
(
12
), pp.
4831
4845
.
62.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution–a Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
, pp.
341
359
.
63.
Lin
,
W.-Y.
,
2010
, “
A GA–DE Hybrid Evolutionary Algorithm for Path Synthesis of Four-Bar Linkage
,”
Mech. Mach. Theory.
,
45
(
8
), pp.
1096
1107
.
64.
Rao
,
R.
,
Savsani
,
V.
, and
Vakharia
,
D.
,
2011
, “
Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
,”
Comput. Aided Des.
,
43
(
3
), pp.
303
315
.
65.
Mallipeddi
,
R.
,
Suganthan
,
P.
,
Pan
,
Q.
, and
Tasgetiren
,
M.
,
2011
, “
Differential Evolution Algorithm With Ensemble of Parameters and Mutation Strategies
,”
Appl. Soft. Comput.
,
11
(
2
), pp.
1679
1696
.
66.
Acharyya
,
S.
, and
Mandal
,
M.
,
2009
, “
Performance of EAS for Four-Bar Linkage Synthesis
,”
Mech. Mach. Theory.
,
44
(
9
), pp.
1784
1794
.
68.
Ting
,
K.-L.
,
Zhu
,
J.
, and
Watkins
,
D.
,
2000
, “
The Effects of Joint Clearance on Position and Orientation Deviation of Linkages and Manipulators
,”
Mech. Mach. Theory.
,
35
(
3
), pp.
391
401
.
69.
Chan
,
C. L.
, and
Ting
,
K. -L.
,
2020
, “
Rotatability of the Floating Link on Multi-Loop Planar Linkages
,”
ASME J. Mech. Rob.
,
12
(
6
), pp.
061007
.
You do not currently have access to this content.