Abstract
Fast inverse kinematics (IK) algorithm is significant for real-time precise motion control for continuum and soft manipulators. In this paper, we studied an explicit expression of a two-segment continuum manipulator based on constant curvature assumptions and discussed the existence of the IK solutions. Utilizing the pseudo-rigid-body method, we contrast this model with the traditional six-axis rigid industrial robot arm, revealing that two-segment extensible continuum manipulators exhibit limited rotation angles around the directional vector of their tips, thereby showcasing reduced dexterity. By pre-constraining five degrees-of-freedom (DOF) and addressing the definition of the remaining DOF, we streamline the IK-solving process, resulting in minimal computational overhead suitable for a wide range of applications. This model promises a robust and real-time approach for controlling two-segment extensible continuum manipulators, enhancing their operational efficiency and effectiveness.