Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Fast inverse kinematics (IK) algorithm is significant for real-time precise motion control for continuum and soft manipulators. In this paper, we studied an explicit expression of a two-segment continuum manipulator based on constant curvature assumptions and discussed the existence of the IK solutions. Utilizing the pseudo-rigid-body method, we contrast this model with the traditional six-axis rigid industrial robot arm, revealing that two-segment extensible continuum manipulators exhibit limited rotation angles around the directional vector of their tips, thereby showcasing reduced dexterity. By pre-constraining five degrees-of-freedom (DOF) and addressing the definition of the remaining DOF, we streamline the IK-solving process, resulting in minimal computational overhead suitable for a wide range of applications. This model promises a robust and real-time approach for controlling two-segment extensible continuum manipulators, enhancing their operational efficiency and effectiveness.

References

1.
Kim
,
Y.-J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2014
, “
A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
382
395
.
2.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
3.
Frazelle
,
C. G.
,
Kapadia
,
A. D.
, and
Walker
,
I. D.
,
2020
, “
A Haptic Continuum Interface for the Teleoperation of Extensible Continuum Manipulators
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1875
1882
.
4.
Dong
,
X.
,
Wang
,
M.
,
Mohammad
,
A.
,
Ba
,
W.
,
Russo
,
M.
,
Norton
,
A.
,
Kell
,
J.
,
Axinte
,
D.
, and
Axinte
,
D.
,
2022
, “
Continuum Robots Collaborate for Safe Manipulation of High-Temperature Flame to Enable Repairs in Challenging Environments
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
1
4
.
5.
Tiefeng
,
S.
,
Mingyu
,
D.
,
Guanjun
,
B.
,
Libin
,
Z.
, and
Qinghua
,
Y.
,
2015
, “
Fruit Harvesting Continuum Manipulator Inspired by Elephant Trunk
,”
Int. J. Agric. Biol. Eng.
,
8
(
1
), pp.
57
63
. http:/dx.doi.org/10.3965/j.ijabe.20150801.008
6.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
7.
Rao
,
P.
,
Peyron
,
Q.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2020
, “
How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
,”
Front. Rob. AI
,
7
, p.
630245
.
8.
George Thuruthel
,
T.
,
Falotico
,
E.
,
Manti
,
M.
,
Pratesi
,
A.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2017
, “
Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments
,”
Soft Rob.
,
4
(
3
), pp.
285
296
.
9.
Frazelle
,
C.
,
Walker
,
I.
,
AlAttar
,
A.
, and
Kormushev
,
P.
,
2021
, “
Kinematic-Model-Free Control for Space Operations With Continuum Manipulators
,”
2021 IEEE Aerospace Conference (50100)
,
Big Sky, MT
, pp.
1
11
.
10.
Wang
,
X.
,
Li
,
Y.
, and
Kwok
,
K.-W.
,
2021
, “
A Survey for Machine Learning-Based Control of Continuum Robots
,”
Front. Rob. AI
,
8
, p.
730330
.
11.
Barrientos-Diez
,
J.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2021
, “
Real-Time Kinematics of Continuum Robots: Modelling and Validation
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
102019
.
12.
Amanov
,
E.
,
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Tendon-Driven Continuum Robots With Extensible Sections—A Model-Based Evaluation of Path-Following Motions
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
7
23
.
13.
Chikhaoui
,
M. T.
,
Lilge
,
S.
,
Kleinschmidt
,
S.
, and
Burgner-Kahrs
,
J.
,
2019
, “
Comparison of Modeling Approaches for a Tendon Actuated Continuum Robot With Three Extensible Segments
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
989
996
.
14.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
935
949
.
15.
Garriga-Casanovas
,
A.
, and
Rodriguez y Baena
,
F.
,
2019
, “
Kinematics of Continuum Robots With Constant Curvature Bending and Extension Capabilities
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011010
.
16.
Wang
,
Y.
,
Wu
,
Z.
,
Wang
,
L.
,
Feng
,
B.
, and
Xu
,
K.
,
2022
, “
IK and Dexterous Workspace Formulation for 2-Segment Continuum Robots With Inextensible Segments
,”
IEEE Robot. Autom. Lett.
,
7
(
1
), pp.
510
517
.
17.
Zhang
,
W.
,
Yang
,
Z.
,
Dong
,
T.
, and
Xu
,
K.
,
2018
, “
FABRIKC: An Efficient Iterative IK Solver for Continuum Robots
,”
2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Auckland, New Zealand
, pp.
346
352
.
18.
Neppalli
,
S.
,
Csencsits
,
M. A.
,
Jones
,
B. A.
, and
Walker
,
I. D.
,
2009
, “
Closed-Form IK for Continuum Manipulators
,”
Adv. Rob.
,
23
(
15
), pp.
2077
2091
.
19.
Neppalli
,
S.
,
Csencsits
,
M. A.
,
Jones
,
B. A.
, and
Walker
,
I.
,
2008
, “
A Geometrical Approach to IK for Continuum Manipulators
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
, pp.
3565
3570
.
20.
Mbakop
,
S.
,
Tagne
,
G.
,
Drakunov
,
S.
, and
Merzouki
,
R.
,
2022
, “
Parametric PH Curves-Model Based Kinematic Control of the Shape of Mobile Soft-Manipulators in Unstructured Environment
,”
IEEE Trans. Ind. Electron.
,
69
(
10
), pp.
10292
10300
.
21.
Godage
,
I. S.
,
Guglielmino
,
E.
,
Branson
,
D. T.
,
Medrano-Cerda
,
G. A.
, and
Caldwell
,
D. G.
,
2011
, “
Novel Modal Approach for Kinematics of Multisection Continuum Arms
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
, pp.
1093
1098
.
22.
Chen
,
Y.
,
Wang
,
L.
,
Galloway
,
K.
,
Godage
,
I.
,
Simaan
,
N.
, and
Barth
,
E.
,
2021
, “
Modal-Based Kinematics and Contact Detection of Soft Robots
,”
Soft Rob.
,
8
(
3
), pp.
298
309
.
23.
Chen
,
X.
,
Zhang
,
X.
,
Huang
,
Y.
,
Cao
,
L.
, and
Liu
,
J.
,
2022
, “
A Review of Soft Manipulator Research, Applications, and Opportunities
,”
J. Field Rob.
,
39
(
3
), pp.
281
311
.
24.
Li
,
J.
,
Chen
,
X.
,
Su
,
Y.
,
Wang
,
W.
,
Lam
,
J.
, and
Wang
,
Z.
,
2022
, “
Kinematic Analysis of Soft Continuum Manipulators Based on Sparse Workspace Mapping
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
5055
5062
.
25.
Peng
,
J.
,
Xu
,
W.
,
Liu
,
T.
,
Yuan
,
H.
, and
Liang
,
B.
,
2021
, “
End-Effector Pose and Arm-Shape Synchronous Planning Methods of a Hyper-Redundant Manipulator for Spacecraft Repairing
,”
Mech. Mach. Theory
,
155
, p.
104062
.
26.
Kapadia
,
A.
, and
Walker
,
I. D.
,
2011
, “
Task-Space Control of Extensible Continuum Manipulators
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 2011
, pp.
1087
1092
.
27.
Garriga-Casanovas
,
A.
, and
Rodriguez y Baena
,
F.
,
2018
, “
Complete Follow-the-Leader Kinematics Using Concentric Tube Robots
,”
Int. J. Rob. Res.
,
37
(
1
), pp.
197
222
.
28.
Chikhaoui
,
M. T.
,
Granna
,
J.
,
Starke
,
J.
, and
Burgner-Kahrs
,
J.
,
2018
, “
Toward Motion Coordination Control and Design Optimization for Dual-Arm Concentric Tube Continuum Robots
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
1793
1800
.
29.
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2015
, “
A Tendon-Driven Continuum Robot With Extensible Sections
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
, pp.
2130
2135
.
30.
Xu
,
Y.
,
Peyron
,
Q.
,
Kim
,
J.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Design of Lightweight and Extensible Tendon-Driven Continuum Robots Using Origami Patterns
,”
2021 IEEE 4th International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT
, pp.
308
314
.
31.
Chiang
,
S.-S.
,
Yang
,
H.
,
Skorina
,
E.
, and
Onal
,
C. D.
,
2021
, “
SLInKi: State Lattice Based Inverse Kinematics—A Fast, Accurate, and Flexible IK Solver for Soft Continuum Robot Manipulators
,”
2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
,
Lyon, Spain
,
Oct. 1–5
.
32.
Zhang
,
H. J.
,
Giamou
,
M.
,
Marić
,
F.
,
Kelly
,
J.
, and
Burgner-Kahrs
,
J.
,
2023
, “
CIDGIKC: Distance-Geometric Inverse Kinematics for Continuum Robots
,”
IEEE Robot. Autom. Lett.
,
8
(
11
), pp.
7679
7686
.
33.
Grassmann
,
R. M.
,
Modes
,
V.
, and
Burgner-Kahrs
,
J.
,
2018
, “
Learning the Forward and Inverse Kinematics of a 6-DOF Concentric Tube Continuum Robot in SE(3)
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain, pp. 5125–5132
.
You do not currently have access to this content.