Abstract
We developed a small jumping mechanism inspired by planthopper. The planthopper jump is characterized by two functions of the hind legs; the leg synchronization using physical contact of the trochanter head and the power amplification using a torque reversal latch. The proposed jump mechanism adopts the unique leg synchronization strategy of the planthopper, and the nymphal and adult models of the hind legs are designed. However, the power amplification is modified to incorporate two torque reversal structures in a single-motion axis. The mechanisms were fabricated by 3D printer with polylactic acid (PLA) material and equipped with extension springs. They weighed 26 g and performed 260 cm vertical jump within one rotation in the frontal plane. The jump height is over 40 times greater than the body length. The experimental findings indicate that the precise synchronization of the rapid leg movement is an effective approach for the design of a jumping mechanism.