Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The kinematic/robotic community is not only interested in measuring the closeness of a given robot configuration to its next singular one but also interested in a geometric meaningful index evaluating how far the robot design is away from being architecturally singular. Such an architecture singularity distance, which can be used by engineers as a criterion within the design process, is presented for a certain class of parallel manipulators called linear pentapods. Geometrically the architecture singular designs are well-understood and can be sub-classified into several cases, which allows for solving the optimization problem of computing the closest architecture singular design to a given linear pentapod with algorithms from numerical algebraic geometry.

References

1.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2001
, “
Generation and Forward Displacement Analysis of Two New Classes of Analytic 6-SPS Parallel Manipulators
,”
J. Field Rob.
,
18
(
6
), pp.
295
304
.
2.
Borras
,
J.
, and
Thomas
,
F.
,
2010
, “
Singularity-Invariant Leg Substitutions in Pentapods
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
2766
2771
.
3.
Rasoulzadeh
,
A.
, and
Nawratil
,
G.
,
2020
, “
Variational Path Optimization of Linear Pentapods With a Simple Singularity Variety
,”
Mech. Mach. Theory
,
153
, p.
104002
.
4.
Alagheband
,
A.
,
Mahmoodi
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2015
, “
Comparative Analysis of a Redundant Pentapod Parallel Kinematic Machine
,”
ASME J. Mech. Rob.
,
7
(
3
), Article No.
034502
.
5.
Borràs
,
J.
,
Thomas
,
F.
, and
Torras
,
C.
,
2014
, “
New Geometric Approaches to the Analysis and Design of Stewart–Gough Platforms
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
445
455
.
6.
Ma
,
O.
, and
Angeles
,
J.
,
1992
, “
Architecture Singularities of Parallel Manipulators
,”
Int. J. Rob. Autom.
,
7
(
1
), pp.
23
29
.
7.
Nawratil
,
G.
, and
Schicho
,
J.
,
2017
, “
Self-motions of Pentapods With Linear Platform
,”
Robotica
,
35
(
4
), pp.
832
860
.
8.
Müller
,
A.
, and
Hufnagel
,
T.
,
2011
, “
A Projection Method for the Elimination of Contradicting Control Forces in Redundantly Actuated PKM
,”
IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
3218
3223
.
9.
Müller
,
A.
,
2011
, “
Problems in the Control of Redundantly Actuated Parallel Manipulators Caused by Geometric Imperfections
,”
Meccanica
,
46
, pp.
41
49
.
10.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2016
, “
Geometric Error Effects on Manipulators’ Positioning Precision: A General Analysis and Evaluation Method
,”
ASME J. Mech. Rob.
,
8
(
6
), Article No.
061016
.
11.
Borras
,
J.
,
Thomas
,
F.
, and
Torras
,
C.
,
2011
, “
Architectural Singularities of a Class of Pentapods
,”
Mech. Mach. Theory
,
48
(
8
), pp.
1107
1120
.
12.
Rasoulzadeh
,
A.
, and
Nawratil
,
G.
,
2019
, “
Linear Pentapods With a Simple Singularity Variety—Part I: Determination and Redundant Designs
,”
Advances in Mechanism and Machine Science—Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science
,
Krakow, Poland
,
June 30–July 4
, T. Uhl, ed., pp.
689
698
.
13.
Bär
,
G. F.
, and
Weiß
,
G.
,
2006
, “
Kinematic Analysis of a Pentapod Robot
,”
J. Geom. Graph.
,
10
(
2
), pp.
173
182
.
14.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2006
, “Bertini: Software for Numerical Algebraic Geometry,” bertini.nd.edu
15.
Breiding
,
P.
, and
Timme
,
S.
,
2018
, “
HomotopyContinuation. jl: A Package for Homotopy Continuation in Julia
,”
Mathematical Software—ICMS 2018
,
South Bend, IN
,
July 24–27
, pp.
458
465
.
16.
Nawratil
,
G.
,
2019
, “
Singularity Distance for Parallel Manipulators of Stewart Gough Type
,”
Advances in Mechanism and Machine Science—Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science
,
Krakow, Poland
,
July 15–18
,
T.
Uhl
, ed.
Springer
, pp.
259
268
.
17.
Cheng
,
D.
,
Hu
,
X.
, and
Martin
,
C.
,
2006
, “
On the Smallest Enclosing Balls
,”
Commun. Inf. Syst.
,
6
(
2
), pp.
137
160
.
18.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
19.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
20.
Nawratil
,
G.
,
2012
, “
Comments on ‘Architectural Singularities of a Class of Pentapods’
,”
Mech. Mach. Theory
,
57
, p.
139
.
21.
Kapilavai
,
A.
,
2023
, “Supplementary Materials: Architecture Singularity Distance Computations for Linear Pentapods,” Mendeley Data, V1, doi:10.17632/dt8w75vyk4.1
22.
Bates
,
D. J.
,
Sommese
,
A. J.
,
Hauenstein
,
J. D.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
Society for Industrial and Applied Mathematics (SIAM)
,
Philadelphia, PA
.
23.
Malajovich
,
G.
, and
Meer
,
K.
,
2005
, “Computing Minimal Multi-homogeneous Bézout Numbers Is Hard,” STACS 2005, Stuttgart, Germany, Feb. 24–26, 2004,
V.
Diekert
and
B.
Durand
, eds, Lecture Notes in Computer Science, Vol.
3404
,
Springer
, pp.
244
255
.
24.
Hauenstein
,
J.
,
Sommese
,
A.
, and
Wampler
,
C.
,
2011
, “
Regeneration Homotopies for Solving Systems of Polynomials
,”
Math. Comput.
,
80
(
273
), pp.
345
377
.
25.
Wampler
,
C. W.
,
1996
, “
Isotropic Coordinates, Circularity, and Bézout Numbers: Planar Kinematics From a New Perspective
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. V02AT02A073
.
26.
Breiding
,
P.
,
2023
, “
Private Communication
.”
27.
Nawratil
,
G.
,
2022
, “
Snappability and Singularity-Distance of Pin-Jointed Body-Bar Frameworks
,”
Mech. Mach. Theory
,
167
, Article No.
104510
.
28.
Merlet
,
J. P.
,
2007
, “
Interval Analysis and Robotics
,”
Robotics Research
,
M.
Kaneko
and
Y.
Nakamura
, eds,
The 13th International Symposium ISRR
,
Hiroshima, Japan
,
Nov. 26–29
, Vol.
56
, pp.
147
156
.
29.
Karger
,
A.
,
2003
, “
Architecture Singular Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1149
1164
.
30.
Karger
,
A.
,
2008
, “
Architecturally Singular Non-planar Parallel Manipulators
,”
Mech. Mach. Theory
,
43
(
3
), pp.
335
346
.
31.
Nawratil
,
G.
,
2008
, “
On the Degenerated Cases of Architecturally Singular Planar Parallel Manipulators
,”
J. Geom. Graph.
,
12
(
2
), pp.
141
149
.
32.
Nawratil
,
G.
,
2009
, “A New Approach to the Classification of Architecturally Singular Parallel Manipulators,”
Computational Kinematics
,
A.
Kecskemethy
and
A.
Müller
, eds, Springer, pp.
349
358
.
You do not currently have access to this content.