Abstract

While soft robots enjoy the benefits of high adaptability and safety, their inherent flexibility makes them suffer from low load-carrying capacity and motion precision, which limits their applications to a broader range of fields. To address this problem, we propose a novel compliant hinge joint with a stiff backbone for load-carrying coupled with soft pneumatic networks (PneuNets) bending actuators. We derive a pseudo-rigid-body model of the joint design and validate it through experiments and simulations. The results show that the joint can achieve a large range of bending angles. The off-axis stiffness is from 16.74 to 627.63 times the in-axis stiffness. This design can carry a heavy load off-axis while maintaining the in-axis flexibility. This work lays out the foundation for designing high-performance soft robots by combining various flexure mechanisms and pneumatic bending actuators.

References

1.
El-Atab
,
N.
,
Mishra
,
R. B.
,
Al-Modaf
,
F.
,
Joharji
,
L.
,
Alsharif
,
A. A.
,
Alamoudi
,
H.
,
Diaz
,
M.
,
Qaiser
,
N.
, and
Hussain
,
M. M.
,
2020
, “
Soft Actuators for Soft Robotic Applications: A Review
,”
Adv. Intell. Syst.
,
2
(
10
), p.
2000128
.
2.
Schiller
,
L.
,
Seibel
,
A.
, and
Schlattmann
,
J.
,
2019
, “
Toward a Gecko-Inspired, Climbing Soft Robot
,”
Front. Neurorobot.
,
13
, p.
106
.
3.
Singh
,
G.
,
Patiballa
,
S.
,
Zhang
,
X.
, and
Krishnan
,
G.
,
2019
, “
A Pipe-Climbing Soft Robot
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
8450
8456
.
4.
Drotman
,
D.
,
Jadhav
,
S.
,
Karimi
,
M.
,
de Zonia
,
P.
, and
Tolley
,
M. T.
,
2017
, “
3D Printed Soft Actuators for a Legged Robot Capable of Navigating Unstructured Terrain
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Marina Bay Sands, Singapore
,
May 29–June 3
, pp.
5532
5538
.
5.
Ishida
,
M.
,
Drotman
,
D.
,
Shih
,
B.
,
Hermes
,
M.
,
Luhar
,
M.
, and
Tolley
,
M. T.
,
2019
, “
Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4163
4169
.
6.
Cheng
,
P.
,
Ye
,
Y.
,
Yan
,
B.
,
Lu
,
Y.
, and
Wu
,
C.
,
2022
, “
Eccentric High-Force Soft Pneumatic Bending Actuator for Finger-Type Soft Grippers
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060908
.
7.
Crowley
,
G. B.
,
Zeng
,
X.
, and
Su
,
H. -J.
,
2022
, “
A 3D Printed Soft Robotic Gripper With a Variable Stiffness Enabled by a Novel Positive Pressure Layer Jamming Technology
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5477
5482
.
8.
Wang
,
J.
,
Liu
,
Z.
, and
Fei
,
Y.
,
2018
, “
Design and Testing of a Soft Rehabilitation Glove Integrating Finger and Wrist Function
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011015
.
9.
Wang
,
J.
,
Fei
,
Y.
, and
Pang
,
W.
,
2019
, “
Design, Modeling, and Testing of a Soft Pneumatic Glove With Segmented PneuNets Bending Actuators
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
990
1001
.
10.
Wang
,
N.
,
Chen
,
B.
,
Ge
,
X.
,
Zhang
,
X.
, and
Chen
,
W.
,
2021
, “
Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021019
.
11.
Zhang
,
Y.
,
Li
,
P.
,
Quan
,
J.
,
Li
,
L.
,
Zhang
,
G.
, and
Zhou
,
D.
,
2023
, “
Progress, Challenges, and Prospects of Soft Robotics for Space Applications
,”
Adv. Intell. Syst.
,
5
(
3
), p.
2200071
.
12.
Cianchetti
,
M.
,
Laschi
,
C.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2018
, “
Biomedical Applications of Soft Robotics
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
143
153
.
13.
Liu
,
J.
,
Wei
,
J.
,
Zhang
,
G.
,
Wang
,
S.
, and
Zuo
,
S.
,
2019
, “
Pneumatic Soft Arm Based on Spiral Balloon Weaving and Shape Memory Polymer Backbone
,”
ASME J. Mech. Des.
,
141
(
8
), p.
082302
.
14.
Zeng
,
X.
,
Hurd
,
C.
,
Su
,
H.-J.
,
Song
,
S.
, and
Wang
,
J.
,
2020
, “
A Parallel-Guided Compliant Mechanism With Variable Stiffness Based on Layer Jamming
,”
Mech. Mach. Theory
,
148
, p.
103791
.
15.
Su
,
H.
,
Hou
,
X.
,
Zhang
,
X.
,
Qi
,
W.
,
Cai
,
S.
,
Xiong
,
X.
, and
Guo
,
J.
,
2022
, “
Pneumatic Soft Robots: Challenges and Benefits
,”
Actuators
,
11
(
3
), p.
92
.
16.
Kim
,
Y.-J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2013
, “
A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
29
(
4
), pp.
1031
1042
.
17.
Alambeigi
,
F.
,
Seifabadi
,
R.
, and
Armand
,
M.
,
2016
, “
A Continuum Manipulator With Phase Changing Alloy
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
758
764
.
18.
Yang
,
Y.
,
Chen
,
Y.
,
Li
,
Y.
,
Chen
,
M. Z.
, and
Wei
,
Y.
,
2017
, “
Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material
,”
Soft Rob.
,
4
(
2
), pp.
147
162
.
19.
Liu
,
M.
,
Hao
,
L.
,
Zhang
,
W.
, and
Zhao
,
Z.
,
2020
, “
A Novel Design of Shape-Memory Alloy-Based Soft Robotic Gripper With Variable Stiffness
,”
Int. J. Adv. Rob. Syst.
,
17
(
1
), p.
1729881420907813
.
20.
Ozkan-Aydin
,
Y.
,
Chong
,
B.
,
Aydin
,
E.
, and
Goldman
,
D. I.
,
2020
, “
A Systematic Approach to Creating Terrain-Capable Hybrid Soft/Hard Myriapod Robots
,”
2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT
,
May 15–July 15
, pp.
156
163
.
21.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2019
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
22.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
23.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics that Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
24.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
25.
Srivastava
,
A.
, and
Hui
,
C.-Y.
,
2013
, “
Large Deformation Contact Mechanics of Long Rectangular Membranes. I. Adhesionless Contact
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
469
(
2160
), p.
20130424
.
26.
Liu
,
Z.
,
Wang
,
F.
,
Liu
,
S.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2021
, “
Modeling and Analysis of Soft Pneumatic Network Bending Actuators
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2195
2203
.
27.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-axis Flexural Pivots
,”
Mech. Mach. Theory.
,
37
(
5
), pp.
461
476
.
28.
Hongzhe
,
Z.
, and
Shusheng
,
B.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
29.
Zhang
,
Y.
,
Su
,
H.-J.
, and
Liao
,
Q.
,
2014
, “
Mobility Criteria of Compliant Mechanisms Based on Decomposition of Compliance Matrices
,”
Mech. Mach. Theory
,
79
, pp.
80
93
.
You do not currently have access to this content.