Abstract

A gripper design is adapted to offer grasping and scooping capabilities to a parallel robot. This enables the parallel robot to manipulate not only large objects, but also thin objects lying on flat surfaces. Moreover, this gripper is driven directly by the redundant degrees of freedom of the parallel robot to which it is integrated. Thus, by eliminating actuators from the gripper, weight is drastically reduced, thereby making it possible to take advantage of the full payload of the parallel robot. The kinematic architecture of the gripper is first presented, notably, the kinematic implications of using an epicyclic mechanism. Then, the kinematic model developed to integrate the gripper to a (6 + 3)-degree-of-freedom robot is presented. Trajectory planning strategies for both grasping and scooping are then presented together with the parameters used. Finally, the experimental validation of these manipulation methods is discussed briefly to assess foreseeable improvements to the gripper itself as well as the trajectory planning aspect of the manipulation methods.

References

1.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
2.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
3.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
4.
Wang
,
J.
,
Wu
,
J.
,
Li
,
T.
, and
Liu
,
X.
,
2009
, “
Workspace and Singularity Analysis of a 3-dof Planar Parallel Manipulator with Actuation Redundancy
,”
Robotica
,
27
(
1
), pp.
51
57
.
5.
Wang
,
D.
,
Fan
,
R.
, and
Chen
,
W.
,
2014
, “
Performance Enhancement of a Three-degree-of-freedom Parallel Tool Head Via Actuation Redundancy
,”
Mech. Mach. Theory.
,
71
(
1
), pp.
142
162
.
6.
Kim
,
S.
,
1997
, “
Operational Quality Analysis of Parallel Manipulators With Actuation Redundancy
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Albuquerque, NM
,
Apr. 20–25
, Vol. 3, pp.
2651
2656
.
7.
Xie
,
F.
,
Liu
,
X.-J.
, and
Wang
,
J.
,
2011
, “
Performance Evaluation of Redundant Parallel Manipulators Assimilating Motion/force Transmissibility
,”
Int. J. Adv. Rob. Syst.
,
8
(
5
), p.
66
.
8.
Isaksson
,
M.
,
Gosselin
,
C.
, and
Marlow
,
K.
,
2016
, “
An Introduction to Utilising the Redundancy of a Kinematically Redundant Parallel Manipulator to Operate a Gripper
,”
Mech. Mach. Theory.
,
101
(
1
), pp.
50
59
.
9.
Tian
,
C.
, and
Zhang
,
D.
,
2021
, “
Design and Analysis of Novel Kinematically Redundant Reconfigurable Generalized Parallel Manipulators
,”
Mech. Mach. Theory.
,
166
(
1
), p.
104481
.
10.
Nouri Rahmat Abadi
,
B.
, and
Carretero
,
J. A.
,
2022
, “
Modeling and Real-Time Motion Planning of a Class of Kinematically Redundant Parallel Mechanisms With Reconfigurable Platform
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021004
.
11.
Wen
,
K.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2020
, “
A Backdrivable Kinematically Redundant (6+3)-degree-of-freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human-Robot Interaction
,”
IEEE Trans. Rob.
,
37
(
4
), pp.
1222
1238
.
12.
Catalano
,
M.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/iit Softhand
,”
Int. J. Robot. Res.
,
33
(
5
), pp.
768
782
.
13.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
14.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
15.
Babin
,
V.
, and
Gosselin
,
C.
,
2018
, “
Picking, Grasping, Or Scooping Small Objects Lying on Flat Surfaces: A Design Approach
,”
Int. J. Rob. Res.
,
37
(
12
), pp.
1484
1499
.
16.
Pierrot
,
F.
,
Nabat
,
V.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-dof Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.
17.
Ceccarelli
,
M.
and
Gradini
,
G.
,
1992
, “
Robot's Gripper Mechanism: Classification and Optimization
,”
Auto. Robot. Technol.
,
1
(
1
), pp.
1
20
.
18.
Babin
,
V.
,
Gosselin
,
C.
, and
Allan
,
J.-F.
,
2014
, “
A Dual-motor Robot Joint Mechanism with Epicyclic Gear Train
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
472
477
.
19.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2008
,
Underactuated Robotic Hands
, 1sted.,
Springer
,
Berlin
.
20.
Nguyen
,
T.-S.
,
Harton
,
D.
,
Campeau-Lecours
,
A.
, and
Gosselin
,
C.
,
2021
, “
Motion Control Algorithms Based on the Dynamic Modelling of Kinematically Redundant Hybrid Parallel Robots
,”
Mechatronics
,
76
(
1
), p.
102555
.
You do not currently have access to this content.