Abstract

This paper presents a method for realizing a gear-spring balancer (GSB) that can cope with variable payloads and its application to serial robots. The GSB is constructed with a three-gear train articulating a nonzero-free-length spring to a rotating link with a mass to be statically balanced. In the proposed method, the parameters of the GSB are derived from solving the identity problem of perfect static balancing. The significance of this method is that it enables the GSB to handle variable payloads via energy-free adjustment and allows the selection of spring stiffness. The effectiveness of the proposed method was demonstrated through a numerical example and experimental tests. The analytical results showed that the GSB theoretically achieved perfect static balancing even when the payload varied. The peak actuator torque of the GSB was practically reduced by more than 90% with different payloads. In this work, the application of the GSB to serial robots is described to underline the significance of the payload variability of the GSB in pick-and-place operations. A theoretical model illustrated that the peak actuator torques of a serial robot were reduced by an average of 93.4% during operation.

References

1.
Brossog
,
M.
,
Bornschlegl
,
M.
, and
Franke
,
J.
,
2015
, “
Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1315
1328
.
2.
Kuo
,
C.-H.
,
Nguyen
,
V. L.
,
Robertson
,
D.
,
Chou
,
L.-T.
, and
Herder
,
J. L.
,
2021
, “
Statically Balancing a Reconfigurable Mechanism by Using One Passive Energy Element Only: A Case Study
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040904
.
3.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
.
4.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
.
5.
Kim
,
S.-H.
, and
Cho
,
C.-H.
,
2017
, “
Static Balancer of a 4-DOF Manipulator With Multi-DOF Gravity Compensators
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
4875
4885
.
6.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
Ph.D. thesis
,
Delft University of Technology
,
Delft, The Netherlands
.
7.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
8.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2012
, “
Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
12
21
.
9.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
, and
Wang
,
X.
,
2016
, “
Passive and Active Gravity Compensation of Horizontally-Mounted 3-RPS Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
104
, pp.
190
201
.
10.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guegan
,
S.
,
2008
, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072305
.
11.
Nguyen
,
V. L.
,
2021
, “
Gravity Compensation of Articulated Robots Using Spring Four-Bar Mechanisms
,”
The Seventh International Symposium on Multibody Systems and Mechatronics (MuSMe)
,
Córdoba, Argentina
,
October 12–15
, pp.
201
209
.
12.
Tschiersky
,
M.
,
Hekman
,
E. E.
,
Brouwer
,
D. M.
, and
Herder
,
J. L.
,
2019
, “
Gravity Balancing Flexure Springs for an Assistive Elbow Orthosis
,”
IEEE Trans. Med. Rob. Bionics
,
1
(
3
), pp.
177
188
.
13.
Tseng
,
T.-Y.
,
Lin
,
Y.-J.
,
Hsu
,
W.-C.
,
Lin
,
L.-F.
, and
Kuo
,
C.-H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
14.
Zhou
,
L.
,
Chen
,
W.
,
Chen
,
W.
,
Bai
,
S.
,
Zhang
,
J.
, and
Wang
,
J.
,
2020
, “
Design of a Passive Lower Limb Exoskeleton for Walking Assistance With Gravity Compensation
,”
Mech. Mach. Theory
,
150
, p.
103840
.
15.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory
,
131
, pp.
351
370
.
16.
Peng
,
Y.
,
Bu
,
W.
, and
Chen
,
J.
,
2022
, “
Design of the Wearable Spatial Gravity Balance Mechanism
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031006
.
17.
Kuo
,
C.-H.
, and
Lai
,
S.-J.
,
2016
, “
Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
015001
.
18.
Kim
,
C.-K.
,
Chung
,
D. G.
,
Hwang
,
M.
,
Cheon
,
B.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2019
, “
Three-Degrees-of-Freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3473
3480
.
19.
Gosselin
,
C. M.
, and
Wang
,
J.
,
1998
, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Leuven, Belgium
,
May 20
, pp.
2287
2294
.
20.
Van der Wijk
,
V.
,
2017
, “
Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance With a New Method for Mass Equivalent Modeling
,”
Mech. Mach. Theory
,
107
, pp.
283
304
.
21.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2021
, “
Rotational Low-Impedance Physical Human–Robot Interaction Using Underactuated Redundancy
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
014503
.
22.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2022
, “
Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011011
.
23.
van der Wijk
,
V.
,
2020
, “
The Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture for Synthesis of Shaking Force Balanced and Gravity Force Balanced Mechanisms
,”
Mech. Mach. Theory
,
150
, p.
103815
.
24.
Kuo
,
C.-H.
,
Nguyen-Vu
,
L.
, and
Chou
,
L.-T.
,
2018
, “
Static Balancing of a Reconfigurable Linkage With Switchable Mobility by Using a Single Counterweight
,”
IEEE International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, Netherlands
,
June 20–22
, pp.
1
6
.
25.
Takahashi
,
T.
,
Zehnder
,
J.
,
Okuno
,
H. G.
,
Sugano
,
S.
,
Coros
,
S.
, and
Thomaszewski
,
B.
,
2019
, “
Computational Design of Statically Balanced Planar Spring Mechanisms
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4438
4444
.
26.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
, p.
104046
.
27.
Wang
,
J.
, and
Kong
,
X.
,
2019
, “
A Geometric Approach to the Static Balancing of Mechanisms Constructed Using Spherical Kinematic Chain Units
,”
Mech. Mach. Theory
,
140
, pp.
305
320
.
28.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2022
, “
Reliability-Based Analysis and Optimization of the Gravity Balancing Performance of Spring-Articulated Serial Robots With Uncertainties
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031016
.
29.
Martini
,
A.
,
Troncossi
,
M.
,
Carricato
,
M.
, and
Rivola
,
A.
,
2015
, “
Static Balancing of a Parallel Kinematics Machine With Linear-Delta Architecture: Theory, Design and Numerical Investigation
,”
Mech. Mach. Theory
,
90
, pp.
128
141
.
30.
Lee
,
W.-B.
,
Lee
,
S.-D.
, and
Song
,
J.-B.
,
2017
, “
Design of a 6-DOF Collaborative Robot Arm With Counterbalance Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
3696
3701
.
31.
Lee
,
D.
, and
Seo
,
T.
,
2017
, “
Lightweight Multi-DOF Manipulator With Wire-Driven Gravity Compensation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1308
1314
.
32.
Min
,
J.-K.
,
Kim
,
D.-W.
, and
Song
,
J.-B.
,
2020
, “
A Wall-Mounted Robot Arm Equipped With a 4-DOF Yaw-Pitch-Yaw-Pitch Counterbalance Mechanism
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
3768
3774
.
33.
Jamshidifar
,
H.
,
Khajepour
,
A.
,
Sun
,
T.
,
Schmitz
,
N.
,
Jalali
,
S.
,
Topor-Gosman
,
R.
, and
Dong
,
J.
,
2021
, “
A Novel Mechanism for Gravity-Balancing of Serial Robots With High-Dexterity Applications
,”
IEEE Trans. Med. Rob. Bionics
,
3
(
3
), pp.
750
761
.
34.
Kim
,
H.-S.
, and
Song
,
J.-B.
,
2014
, “
Multi-DOF Counterbalance Mechanism for a Service Robot Arm
,”
IEEE/ASME Trans. Mechatron.
,
19
(
6
), pp.
1756
1763
.
35.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
,
1995
, “
A Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
655
658
.
36.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Sacramento, CA
,
April 9–11
, pp.
1536
1541
.
37.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
.
38.
Shieh
,
W.-B.
, and
Chou
,
B.-S.
,
2015
, “
A Novel Spring Balancing Device on the Basis of a Scotch Yoke Mechanism
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
October 25–30
, pp.
206
212
.
39.
Nguyen
,
V. L.
,
2022
, “
A Design Approach for Gravity Compensators Using Planar Four-Bar Mechanisms and a Linear Spring
,”
Mech. Mach. Theory
,
172
, p.
104770
.
40.
Bijlsma
,
B. G.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design of a Compact Gravity Equilibrator With an Unlimited Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061003
.
41.
Zhang
,
J.
,
Shaw
,
A. D.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Woods
,
B. K.
,
2019
, “
Bidirectional Spiral Pulley Negative Stiffness Mechanism for Passive Energy Balancing
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
054502
.
42.
Hung
,
Y.-C.
, and
Kuo
,
C.-H.
,
2017
, “A Novel One-DoF Gravity Balancer Based on Cardan Gear Mechanism,”
Mechanisms and Machine Science, New Trends in Mechanism and Machine Science
,
Springer International Publishing
,
Switzerland
, pp.
261
268
.
43.
Linh
,
N. V.
, and
Kuo
,
C.-H.
,
2019
, “
A Gear-Slider Gravity Compensation Mechanism: Design and Experimental Study
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE)
,
Anaheim, CA
,
August 18–21
, Paper No.
IDETC2019-97602
.
44.
Ahn
,
K.-H.
,
Lee
,
W.-B.
, and
Song
,
J.-B.
,
2016
, “
Reduction in Gravitational Torques of an Industrial Robot Equipped With 2 DOF Passive Counterbalance Mechanisms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
October 9–14
, pp.
4344
4349
.
45.
Kim
,
H.-S.
,
Min
,
J.-K.
, and
Song
,
J.-B.
,
2016
, “
Multiple-Degree-of-Freedom Counterbalance Robot Arm Based on Slider-Crank Mechanism and Bevel Gear Units
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
230
235
.
46.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
47.
Lee
,
G.
,
Lee
,
D.
, and
Oh
,
Y.
,
2018
, “
One-Piece Gravity Compensation Mechanism Using Cam Mechanism and Compression Spring
,”
Int. J. Precis. Eng. Manuf. – Green Technol.
,
5
(
3
), pp.
415
420
.
48.
Koser
,
K.
,
2009
, “
A Cam Mechanism for Gravity-Balancing
,”
Mech. Res. Commun.
,
36
(
4
), pp.
523
530
.
49.
Blad
,
T.
,
van Ostayen
,
R. A.
,
Herder
,
J. L.
, and
Tolou
,
N.
,
2022
, “
A Statically Balanced Compliant Ortho-Planar Mechanism for Low-Frequency Energy Harvesting
,”
ASME J. Mech. Des.
,
144
(
7
), p.
073302
.
50.
Machekposhti
,
D. F.
,
Tolou
,
N.
, and
Herder
,
J.
,
2018
, “
A Statically Balanced Fully Compliant Power Transmission Mechanism Between Parallel Rotational Axes
,”
Mech. Mach. Theory
,
119
, pp.
51
60
.
51.
Bilancia
,
P.
,
Smith
,
S. P.
,
Berselli
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Zero Torque Compliant Mechanisms Employing Pre-Buckled Beams
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113301
.
52.
Franco
,
J. A.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2021
, “
Static Balancing of Four-Bar Compliant Mechanisms With Torsion Springs by Exerting Negative Stiffness Using Linear Spring at the Instant Center of Rotation
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031010
.
53.
Blad
,
T.
,
Van Ostayen
,
R.
, and
Tolou
,
N.
,
2021
, “
A Method for Tuning the Stiffness of Building Blocks for Statically Balanced Compliant Ortho-Planar Mechanisms
,”
Mech. Mach. Theory
,
162
, p.
104333
.
54.
Numić
,
A.
,
Blad
,
T.
, and
van Keulen
,
F.
,
2022
, “
Stiffness Compensation Through Matching Buckling Loads in a Compliant Four-Bar Mechanism
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021007
.
55.
Barajas
,
J. C.
, and
Paz
,
R. A.
,
2016
, “
Autobalancing a Generalized Gravity Equilibrator
,”
Int. J. Dyn. Control
,
4
(
4
), pp.
515
526
.
56.
Briot
,
S.
, and
Arakelian
,
V.
,
2015
, “
A New Energy-Free Gravity-Compensation Adaptive System for Balancing of 4-DOF Robot Manipulators With Variable Payloads
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
179
187
.
57.
Kim
,
J.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
G.
,
2020
, “
Compact Variable Gravity Compensation Mechanism With a Geometrically Optimized Lever for Maximizing Variable Ratio of Torque Generation
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2019
2026
.
58.
Chew
,
D. X.
,
Wood
,
K. L.
, and
Tan
,
U.
,
2019
, “
Design of a Passive Self-Regulating Gravity Compensator for Variable Payloads
,”
ASME J. Mech. Des.
,
141
(
10
), p.
102302
.
59.
Takesue
,
N.
,
Ikematsu
,
T.
,
Murayama
,
H.
, and
Fujimoto
,
H.
,
2011
, “
Design and Prototype of Variable Gravity Compensation Mechanism (VGCM)
,”
J. Rob. Mechatron.
,
23
(
2
), pp.
249
257
.
60.
Yang
,
Z.-W.
, and
Lan
,
C.-C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
.
61.
Van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Devices
,
1
(
2
), pp.
151
158
.
62.
Chu
,
Y.-L.
, and
Kuo
,
C.-H.
,
2017
, “
A Single-Degree-of-Freedom Self-Regulated Gravity Balancer for Adjustable Payload
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021006
.
63.
Van Dorsser
,
W.
,
Barents
,
R.
,
Wisse
,
B.
,
Schenk
,
M.
, and
Herder
,
J.
,
2008
, “
Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness
,”
Proc. Inst. Mech. Eng. C
,
222
(
9
), pp.
1839
1846
.
64.
KR GmbH
,
2019
, “
The KR QUANTEC Series, KR 210 R3100 Ultra
,” KUKA Industrial Robotics_High Payloads, KUKA Deutschland GmbH Zugspitzstrasse 140, 86165 Augsburg, Germany.
65.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2021
, “
Gravity Balancing Reliability and Sensitivity Analysis of Robotic Manipulators With Uncertainties
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Online, Virtual,
August 17–20
, Paper No.
DETC2021
66762
.
66.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.