Abstract

In this study, we present a structural optimization framework to design constant force mechanisms (CFMs) with high energy storage capacity. In the framework, the constant force behavior with a zero preload is defined to be ideal, as this has the maximum energy storage given force and displacement limits. A graph-based topology selection, followed by shape optimization is conducted to select designs with energy storage most similar to the energy of the ideal constant force relation. The obtained CFM designs through this framework has a higher energy similarity index compared to typical designs from literature (0.95 versus 0.90). The constant force mechanisms developed through this study can be further applied in different robot/human–environment interfaces that benefit from both mitigating impact force and increasing energy storage.

References

1.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
2.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
3.
Li
,
M.
, and
Cheng
,
W.
,
2018
, “
Design and Experimental Validation of a Large-Displacement Constant-Force Mechanism
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051007
.
4.
Wang
,
J. Y.
, and
Lan
,
C. C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
5.
Liu
,
C. H.
,
Hsu
,
M. C.
,
Chen
,
T. L.
, and
Chen
,
Y.
,
2020
, “
Optimal Design of a Compliant Constant-Force Mechanism to Deliver a Nearly Constant Output Force Over a Range of Input Displacements
,”
Soft Rob.
,
7
(
6
), pp.
758
769
.
6.
Xu
,
Q.
,
2016
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
.
7.
Wang
,
P. Y.
, and
Xu
,
Q. S.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
8.
Kim
,
Y.-D.
,
Lee
,
B.-J.
,
Yoo
,
J.-K.
,
Kim
,
J.-H.
, and
Ryu
,
J.-H.
,
2006
, “
Compensation for the Landing Impact Force of a Humanoid Robot by Time Domain Passivity Approach
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
1225
1230
.
9.
Kim
,
Y.-D.
,
Lee
,
B.-J.
,
Ryu
,
J.-H.
, and
Kim
,
J.-H.
,
2007
, “
Landing Force Control for Humanoid Robot by Time-Domain Passivity Approach
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1294
1301
.
10.
Wang
,
L.
,
Meng
,
F.
,
Kang
,
R.
,
Sato
,
R.
,
Chen
,
X.
,
Yu
,
Z.
,
Ming
,
A.
, and
Huang
,
Q.
,
2021
, “
Design and Implementation of Symmetric Legged Robot for Highly Dynamic Jumping and Impact Mitigation
,”
Sensors
,
21
(
20
), p.
6885
.
11.
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2009
, “
The Use of Compliant Joints and Elastic Energy Storage in Bio-Inspired Legged Robots
,”
Mech. Mach. Theory
,
44
(
3
), pp.
580
590
.
12.
Zhao
,
J. G.
,
Xu
,
J.
,
Gao
,
B. T.
,
Xi
,
N.
,
Cintron
,
F. J.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2013
, “
MSU Jumper: A Single-Motor-Actuated Miniature Steerable Jumping Robot
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
602
614
.
13.
Sadeghi
,
S.
,
Allison
,
S. R.
,
Bestill
,
B.
, and
Li
,
S. Y.
,
2021
, “
TMP Origami Jumping Mechanism With Nonlinear Stiffness
,”
Smart Mater. Struct.
,
30
(
6
), p.
065002
.
14.
Rond
,
J. J.
,
Cardani
,
M. C.
,
Campbell
,
M. I.
, and
Hurst
,
J. W.
,
2020
, “
Mitigating Peak Impact Forces by Customizing the Passive Foot Dynamics of Legged Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051010
.
15.
van Gent
,
R. N.
,
Siem
,
D.
,
van Middelkoop
,
M.
,
van Os
,
A. G.
,
Bierma-Zeinstra
,
S. M. A.
, and
Koes
,
B. W.
,
2007
, “
Incidence and Determinants of Lower Extremity Running Injuries in Long Distance Runners: A Systematic Review
,”
British J. Sports Med.
,
41
(
8
), pp.
469
480
.
16.
Hoogkamer
,
W.
,
Kipp
,
S.
,
Frank
,
J. H.
,
Farina
,
E. M.
,
Luo
,
G.
, and
Kram
,
R.
,
2018
, “
A Comparison of the Energetic Cost of Running in Marathon Racing Shoes
,”
Sports Med.
,
48
(
4
), pp.
1009
1019
.
17.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load–displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
.
18.
Lan
,
C.
,
Wang
,
J.
, and
Chen
,
Y.
,
2010
, “
A Compliant Constant-Force Mechanism for Adaptive Robot End-Effector Operations
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
2131
2136
.
19.
Ma
,
F.
,
Chen
,
G.
, and
Wang
,
H.
,
2020
, “
Large-Stroke Constant-Force Mechanisms Utilizing Second Buckling Mode of Flexible Beams: Evaluation Metrics and Design Approach
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103303
.
20.
Bilancia
,
P.
, and
Berselli
,
G.
,
2020
, “
Design and Testing of a Monolithic Compliant Constant Force Mechanism
,”
Smart Mater. Struct.
,
29
(
4
), p.
044001
.
21.
Lu
,
K.-J.
, and
Kota
,
S.
,
2005
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
22.
Qaiser
,
Z.
,
Kang
,
L.
, and
Johnson
,
S.
,
2020
, “
Design and Development of a Constant Force Non-linear Spring (CF-NLS) for Energy Storage
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
83990
,
American Society of Mechanical Engineers
, Paper No. V010T10A008.
23.
Wilson
,
R. J.
,
1986
,
Introduction to Graph Theory
,
John Wiley & Sons, Inc.
,
New York
.
24.
Ultimaker, 2020, Technical Data Sheet PLA.
25.
Farah
,
S.
,
Anderson
,
D. G.
, and
Langer
,
R.
,
2016
, “
Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications – A Comprehensive Review
,”
Adv. Drug Delivery. Rev.
,
107
, pp.
367
392
.
26.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
J.
McCarthy
, ed.,
Springer
,
London
, pp.
189
216
.
27.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
28.
Rummel
,
J.
,
Blum
,
Y.
,
Maus
,
H. M.
,
Rode
,
C.
, and
Seyfarth
,
A.
,
2010
, “
Stable and Robust Walking With Compliant Legs
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7
, pp.
5250
5255
.
29.
Chanthasopeephan
,
T.
,
Jarakorn
,
A.
,
Polchankajorn
,
P.
, and
Maneewarn
,
T.
,
2014
, “
Impact Reduction Mobile Robot and the Design of the Compliant Legs
,”
Rob. Auton. Syst.
,
62
(
1
), pp.
38
45
.
30.
Qaiser
,
Z.
,
Kang
,
L.
, and
Johnson
,
S.
,
2017
, “
Design of a Bioinspired Tunable Stiffness Robotic Foot
,”
Mech. Mach. Theory
,
110
, pp.
1
15
.
31.
Qaiser
,
Z.
, and
Johnson
,
S.
,
2020
, “
Generalized Spiral Spring: A Bioinspired Tunable Stiffness Mechanism for Linear Response With High Resolution
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011007
.
You do not currently have access to this content.