Abstract

A multistable compliant mechanism is a device that can hold several distinct positions through the storage and release of the strain energy associated with deflections of the flexible members. This self-locking capability can benefit many applications such as threshold acceleration sensing, overload protection, and shape reconfiguration. This work presents a novel class of fully compliant tristable mechanisms called tensural–compresural tristable mechanisms (TCTMs), which forms three stable equilibrium positions through unique utilization of both tensural segments and compresural segments. To identify feasible designs, a kinetostatic model is developed using the chained beam-constraint-model (CBCM) for both tensural segments and compresural segments. Two TCTM designs accompanied with a prototype are presented to demonstrate the feasibility of this new tristable configuration and the effectiveness of the kinetostatic model.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
,
2002
, “
In-Plane Linear Displacement Bistable Microrelay
,”
J. Micromech. Microeng.
,
12
(
3
), pp.
257
264
. 10.1088/0960-1317/12/3/310
3.
Luharuka
,
R.
, and
Hesketh
,
P. J.
,
2007
, “
Design of Fully Compliant, In-Plane Rotary, Bistable Micromechanisms for Mems Applications
,”
Sens. Actuators A
,
134
(
1
), pp.
231
238
. 10.1016/j.sna.2006.04.030
4.
Foulds
,
I. G.
,
Trinh
,
M. T.
,
Hu
,
S.
,
Liao
,
S. W.
,
Johnstone
,
R. W.
, and
Parameswaran
,
M. A.
,
2003
, “
New Design for Surface Micromachined Bistable and Multistable Switches
,”
J. Microlith., Microfab., Microsyst.
,
2
(
4
), pp.
255
258
. 10.1117/1.1610476
5.
Oberhammer
,
J.
,
Tang
,
M.
,
Liu
,
A. Q.
, and
Stemme
,
G.
,
2006
, “
Mechanically Tri-stable, True Single-Pole-Double-Throw (SPDT) Switches
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2251
2258
. 10.1088/0960-1317/16/11/001
6.
Hansen
,
B. J.
,
Carron
,
C. J.
,
Jensen
,
B. D.
,
Hawkins
,
A. R.
, and
Schultz
,
S. M.
,
2007
, “
Plastic Latching Accelerometer Based on Bistable Compliant Mechanisms
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1967
1972
. 10.1088/0964-1726/16/5/055
7.
Zhao
,
J.
,
Jia
,
J.
,
Wang
,
H.
, and
Li
,
W.
,
2007
, “
A Novel Threshold Accelerometer With Post-Buckling Structures for Airbag Restraint Systems
,”
IEEE Sens. J.
,
7
(
8
), pp.
1102
1109
. 10.1109/JSEN.2007.897936
8.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045005
. 10.1088/0960-1317/18/4/045005
9.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory.
,
46
(
7
), pp.
899
909
. 10.1016/j.mechmachtheory.2011.02.008
10.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
. 10.1002/adma.201601650
11.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
. 10.1002/adma.201502809
12.
Ayoubi
,
Y.
,
Laribi
,
M. A.
,
Courrges
,
F.
,
Zeghloul
,
S.
, and
Arsicault
,
M.
,
2016
, “
A Complete Methodology to Design a Safety Mechanism for Prismatic Joint Implementation
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, Korea
,
Oct. 9–14
, pp.
304
309
.
13.
Andò
,
B.
,
Baglio
,
S.
,
Bulsara
,
A. R.
, and
Marletta
,
V.
,
2014
, “
A Bistable Buckled Beam Based Approach for Vibrational Energy Harvesting
,”
Sens. Actuators A
,
211
(
5
), pp.
153
161
. 10.1016/j.sna.2013.12.027
14.
Kim
,
G.-W.
, and
Kim
,
J.
,
2013
, “
Compliant Bistable Mechanism for Low Frequency Vibration Energy Harvester Inspired by Auditory Hair Bundle Structures
,”
Smart Mater. Struct.
,
22
(
1
), p.
014005
. 10.1088/0964-1726/22/1/014005
15.
Jung
,
S. P.
,
Jung
,
G. P.
,
Koh
,
J. S.
,
Lee
,
D. Y.
, and
Cho
,
K. J.
,
2015
, “
Fabrication of Composite and Sheet Metal Laminated Bistable Jumping Mechanism
,”
ASME J. Mech. Robotics
,
7
(
2
), p.
021010
. 10.1115/1.4029489
16.
Gerson
,
Y.
,
Krylov
,
S.
, and
Ilic
,
B.
,
2010
, “
Electrothermal Bistability Tuning in a Large Displacement Micro Actuator
,”
J. Micromech. Microeng.
,
20
(
11
), p.
112001
. 10.1088/0960-1317/20/11/112001
17.
Hussein
,
H.
,
Bouhadda
,
I.
,
Mohand-Ousaid
,
A.
,
Bourbon
,
G.
,
Moal
,
P. L.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2018
, “
Design and Fabrication of Novel Discrete Actuators for Microrobotic Tasks
,”
Sens. Actuators A.
,
271
(
1
), pp.
373
382
. 10.1016/j.sna.2017.12.065
18.
Chalvet
,
V.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2013
, “
A Microfabricated Planar Digital Microrobot for Precise Positioning Based on Bistable Modules
,”
IEEE Trans. Robotics
,
29
(
3
), pp.
641
649
. 10.1109/TRO.2013.2240174
19.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
701
708
. 10.1115/1.1625399
20.
Su
,
H.-J.
, and
McCarthy
,
M
,
2007
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
. 10.1115/1.2757192
21.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
. 10.1115/1.2829477
22.
Chen
,
G.
, and
Du
,
Y.
,
2013
, “
Double-Young Tristable Mechanisms
,”
ASME J. Mech. Robot.
,
5
(
1
), p.
011007
. 10.1115/1.4007941
23.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Robot.
,
5
(
2
), p.
021005
. 10.1115/1.4023557
24.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
273
280
. 10.1109/JMEMS.2003.811751
25.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (ftbm)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
. 10.1109/JMEMS.2005.859089
26.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
. 10.1115/1.4029024
27.
Sönmez
,
U.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
. 10.1115/1.2839009
28.
Tsay
,
J.
,
Chang
,
H.-A.
, and
Sung
,
C.-K.
,
2005
, “
Design and Experiments of Fully Compliant Bistable Micromechanisms
,”
Mech. Mach. Theory.
,
40
(
1
), pp.
17
31
. 10.1016/j.mechmachtheory.2004.05.006
29.
Hwang
,
I.
,
Shim
,
Y.
, and
Lee
,
J.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
954
. 10.1088/0960-1317/13/6/318
30.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
. 10.1109/JMEMS.2004.825308
31.
Ramini
,
A.
,
Bellaredj
,
M. L. F.
,
Hafiz
,
M. A. A.
, and
Younis
,
M. I.
,
2015
, “
Experimental Investigation of Snap-Through Motion of In-Plane MEMS Shallow Arches Under Electrostatic Excitation
,”
J. Micromech. Microeng.
,
26
(
1
), p.
015012
. 10.1088/0960-1317/26/1/015012
32.
Casals-Terre
,
J.
,
Fargas-Marques
,
A.
, and
Shkel
,
A.
,
2008
, “
Snap-Action Bistable Micromechanisms Actuated by Nonlinear Resonance
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1082
1093
. 10.1109/JMEMS.2008.2003054
33.
Medina
,
L.
,
Gilatb
,
R.
, and
Krylov
,
S.
,
2016
, “
Bistable Behavior of Electrostatically Actuated Initially Curved Micro Plate
,”
Sens. Actuators A
,
248
(
9
), pp.
193
198
. 10.1016/j.sna.2016.07.027
34.
Oh
,
Y.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
. 10.1115/1.3013316
35.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Quadristable Compliant Mechanism With a Bistable Structure Embedded in a Surrounding Beam Structure
,”
Sens. Actuators A
,
167
(
2
), pp.
438
448
. 10.1016/j.sna.2011.02.044
36.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2009
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
2
(
1
), p.
014501
. 10.1115/1.4000529
37.
Han
,
J. S.
,
Müller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
,
2007
, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1198
1203
. 10.1115/1.2771577
38.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
. 10.1115/1.4004543
39.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
(
2
), p.
025011
. 10.1088/0960-1317/19/2/025011
40.
Hao
,
G.
, and
Mullins
,
J.
,
2015
, “
On the Infinitely-Stable Rotational Mechanism Using the Off-Axis Rotation of a Bistable Translational Mechanism
,”
Mech. Sci.
,
6
(
1
), pp.
75
80
. 10.5194/ms-6-75-2015
41.
Zanaty
,
M.
, and
Henein
,
S.
,
2018
, “
Programmable Constant-Force Multistable Mechanisms
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p.
V05AT07A002
.
42.
Han
,
Q.
,
Jin
,
K.
,
Chen
,
G.
, and
Shao
,
X.
,
2017
, “
A Novel Fully Compliant Tensural-Compresural Bistable Mechanism
,”
Sens. Actuators A
,
227
(
12
), pp.
39
47
. 10.1016/j.sna.2017.10.012
43.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Robot.
,
8
(
2
), p.
021018
. 10.1115/1.4031028
44.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam-Constraint-Model
,”
ASME J. Mech. Robot.
,
8
(
4
), p.
041011
. 10.1115/1.4032632
45.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
. 10.1115/1.2717231
46.
Lan
,
C. C.
,
2007
, “
Analysis of Large-Displacement Compliant Mechanisms Using an Incremental Linearization Approach
,”
Mech. Mach. Theory
,
43
(
5
), pp.
641
658
. 10.1016/j.mechmachtheory.2007.03.010
47.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
5
(
2
), p.
021006
. 10.1115/1.4023558
48.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
. 10.1115/1.4003922
49.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
. 10.1115/1.4041585
50.
Chen
,
G.
,
Xiong
,
B.
, and
Huang
,
X.
,
2011
, “
Finding the Optimal Characteristic Parameters for 3r Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer
,”
Precision Eng.
,
35
(
3
), pp.
505
511
. 10.1016/j.precisioneng.2011.02.006
51.
Wittwer
,
J. W.
,
Baker
,
M. S.
, and
Howell
,
L. L.
,
2006
, “
Robust Design and Model Validation of Nonlinear Compliant Micromechanisms
,”
J. Microelectromech. Syst.
,
15
(
1
), pp.
33
41
. 10.1109/JMEMS.2005.859190
You do not currently have access to this content.