Abstract

Developing robotic systems for reducing the dependence of elderly on personal assistance is one of the most recent hot topics in robotics research. This paper proposes a multifunction mobility assistive device, which consists of an assisting parallel manipulator carried over an active walker. It is developed to interactively assist in various lower limb activities, namely, sit-to-stand, walking, bed or toilet to wheelchair transfer, and support in the upright position. The assisting parallel manipulator is constructed based on two of the nonconventional structure of the 3-RPR parallel manipulator. This structure offers kinematic decoupling between the position and orientation and free of singularity suitable workspace as well as high rigidity and payload capability. Kinematic, dynamic, and finite element analyses are performed to ensure the functionality of the device. A prototype of the device is constructed to verify the applicability of the device. The prototype is shown to be suitable for assisting subjects to stand up in a natural manner.

References

1.
Riley
,
P. O.
,
Krebs
,
D. E.
, and
Popat
,
R. A.
,
1997
, “
Biomechanical Analysis of Failed Sit-to-Stand
,”
IEEE Trans. Rehabil. Eng.
,
5
(
4
), pp.
353
359
. 10.1109/86.650289
2.
Hignett
,
S.
,
1996
, “
Work-Related Back Pain in Nurses
,”
J. Adv. Nurs.
,
23
(
6
), pp.
1238
1246
. 10.1046/j.1365-2648.1996.13423.x
3.
Hoenig
,
H.
,
Taylor
,
D. H.
, Jr.
, and
Sloan
,
F. A.
,
2003
, “
Does Assistive Technology Substitute for Personal Assistance Among the Disabled Elderly?
,”
Am. J. Public Health
,
93
(
2
), pp.
330
337
. 10.2105/AJPH.93.2.330
4.
Burnfield
,
J. M.
,
McCrory
,
B.
,
Shu
,
Y.
,
Buster
,
T. W.
,
Taylor
,
A. P.
, and
Goldman
,
A. J.
,
2013
, “
Comparative Kinematic and Electromyographic Assessment of Clinician- and Device-Assisted Sit-to-Stand Transfers in Patients With Stroke
,”
Phys. Therapy
,
93
(
10
), pp.
1331
1341
. 10.2522/ptj.20120500
5.
Burnfield
,
J. M.
,
Shu
,
Y.
,
Buster
,
T. W.
,
Taylor
,
A. P.
,
McBride
,
M. M.
, and
Krause
,
M. E.
,
2012
, “
Kinematic and Electromyographic Analyses of Normal and Device-Assisted Sit-to-Stand Transfers
,”
Gait Posture
,
36
(
3
), pp.
516
522
. 10.1016/j.gaitpost.2012.05.002
6.
Tsukahara
,
A.
,
Kawanishi
,
R.
,
Hasegawa
,
Y.
, and
Sankai
,
Y.
,
2010
, “
Sit-to-Stand and Stand-to-Sit Transfer Support for Complete Paraplegic Patients With Robot Suit Hal
,”
Adv. Robot.
,
24
(
11
), pp.
1615
1638
. 10.1163/016918610X512622
7.
Asker
,
A.
,
Salah
,
O.
,
El-Bab
,
A. M. F.
,
Ramadan
,
A. A.
,
Assal
,
S. M.
,
Sessa
,
S.
, and
Abo-Ismail
,
A.
,
2014
, “
Anfis Based Jacobian for a Parallel Manipulator Mobility Assistive Device
,”
Proceedings of IEEE UKACC International Conference on Control
,
Loughborough, UK
,
July 9–11
, pp.
395
400
.
8.
Morita
,
Y.
,
Chugo
,
D.
,
Sakaida
,
Y.
,
Yokota
,
S.
, and
Takase
,
K.
,
2012
, “
Standing Motion Assistance on a Robotic Walker Based on the Estimated Patient’s Load
,”
Proceedings of IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Rome, Italy
,
June 24–27
, pp.
1721
1726
.
9.
DallaLibera
,
F.
,
Tsusaka
,
Y.
,
Okazaki
,
Y.
,
Futakuchi
,
R.
,
Yamamoto
,
M.
,
Shikata
,
N.
, and
Terashima
,
M.
,
2016
, “
Analysis of Velocity’s Influence on Forces and Muscular Activity in the Context of Sit-To-Stand Motion Assisted by an Elderly Care Robot
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
717
724
.
10.
Asker
,
A.
,
Assal
,
S.
,
Ding
,
M.
,
Takamatsu
,
J.
,
Ogasawara
,
T.
, and
Mohamed
,
A. M.
,
2017
, “
Modeling of Natural Sit-to-Stand Movement Based on Minimum Jerk Criterion for Natural-Like Assistance and Rehabilitation
,”
Adv. Robot.
,
31
(
17
), pp.
901
917
. 10.1080/01691864.2017.1372214
11.
Asker
,
A.
,
Assal
,
S.
,
Ding
,
M.
,
Takamatsu
,
J.
,
Ogasawara
,
T.
, and
Mohamed
,
A.
,
2016
, “
Experimental Validation of a Motion Generation Model for Natural Robotics-Based Sit to Stand Assistance and Rehabilitation
,”
Proceedings of IEEE International Conference on Robotics and Biomimetics
,
Qingdao, China
,
Dec. 3–7
, pp.
214
219
.
12.
Merlet
,
J.-P.
,
1996
, “
Direct Kinematics of Planar Parallel Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
4
,
Minneapolis, MN
,
Apr. 22–28
, pp.
3744
3749
.
13.
Merlet
,
J.-P.
,
Gosselin
,
C. M.
, and
Mouly
,
N.
,
1998
, “
Workspaces of Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
33
(
1–2
), pp.
7
20
. 10.1016/S0094-114X(97)00025-6
14.
Pheasant
,
S.
, and
Haslegrave
,
C. M.
,
2018
,
Bodyspace: Anthropometry, Ergonomics and the Design of Work
, 3rd ed.,
CRC Press
,
London
.
15.
Pang
,
H.
, and
Shahinpoor
,
M.
,
1994
, “
Inverse Dynamics of a Parallel Manipulator
,”
J. Robot. Syst.
,
11
(
8
), pp.
693
702
. 10.1002/rob.v11:8
16.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
. 10.1016/j.mechmachtheory.2010.05.001
17.
Zhou
,
L.
, and
Bai
,
S.
,
2015
, “
A New Approach to Design of a Lightweight Anthropomorphic Arm for Service Applications
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031001
. 10.1115/1.4028292
You do not currently have access to this content.