Abstract

Based on the bi-material triangle lattice cell, a new cellular structure, bi-material re-entrant triangle (BRT) cellular structure, is devised to incorporate tailorable coefficient of thermal expansion (CTE) and tunable Poisson's ratio (PR) properties by replacing the straight base of a triangle with two hypotenuse members. A general thermoelasticity equation to systematically build the relationship among the external force, the temperature load, and the deformation for planar lattice structures with bounded joints is derived and then embedded into a theoretical model for the devised BRT structure. Using assembled thermoelasticity equation, effective PR, Young's modulus, as well as CTE are computed. In order to guide designers to construct initial concepts, the design domain for coupling negative CTE and negative PR properties is plotted. The material-property-combination region that can be achieved by this cellular structure is determined within an Ashby material selection chart of CTE versus PR. Nine available combinations of CTE and PR properties are extracted and demonstrated with abaqus simulation.

References

1.
Ai
,
L.
, and
Gao
,
X. L.
,
2017
, “
Metamaterials With Negative Poisson’s Ratio and Non-Positive Thermal Expansion
,”
Compos. Struct.
,
162
, pp.
70
84
. 10.1016/j.compstruct.2016.11.056
2.
Surjadi
,
J. U.
,
Gao
,
L. B.
,
Du
,
H. F.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), p.
1800864
. 10.1002/adem.201800864
3.
Nicolaou
,
Z. G.
, and
Motter
,
A. E.
,
2012
, “
Mechanical Metamaterials With Negative Compressibility Transitions
,”
Nat. Mater.
,
11
(
7
), pp.
608
613
. 10.1038/nmat3331
4.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061004
. 10.1115/1.4024122
5.
Ai
,
L.
, and
Gao
,
X. L.
,
2018
, “
An Analytical Model for Star-Shaped Re-Entrant Lattice Structures With the Orthotropic Symmetry and Negative Poisson’s Ratios
,”
Int. J. Mech. Sci.
,
145
, pp.
158
170
. 10.1016/j.ijmecsci.2018.06.027
6.
Gao
,
Q.
,
Wang
,
L. M.
,
Zhou
,
Z.
,
Ma
,
Z. D.
,
Wang
,
C. Z.
, and
Wang
,
Y. L.
,
2018
, “
Theoretical, Numerical and Experimental Analysis of Three-Dimensional Double-V Honeycomb
,”
Mater. Des.
,
139
, pp.
380
391
. 10.1016/j.matdes.2017.11.024
7.
Wei
,
K.
,
Peng
,
Y.
,
Qu
,
Z. L.
,
Pei
,
Y. M.
, and
Fang
,
D. N.
,
2018
, “
A Cellular Metastructure Incorporating Coupled Negative Thermal Expansion and Negative Poisson’s Ratio
,”
Int. J. Solids Struct.
,
150
, pp.
255
267
. 10.1016/j.ijsolstr.2018.06.018
8.
Hou
,
J. H.
,
Li
,
D.
, and
Dong
,
L.
,
2018
, “
Mechanical Behaviors of Hierarchical Cellular Structures With Negative Poisson’s Ratio
,”
J. Mater. Sci.
,
53
(
14
), p.
10209
. 10.1007/s10853-018-2298-0
9.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
. 10.1088/1361-665X/aaa61c
10.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
. 10.1126/science.235.4792.1038
11.
Huan
,
W.
,
Lu
,
Z. X.
,
Yang
,
Z. Y.
, and
Li
,
X.
,
2019
, “
A Novel Re-Entrant Auxetic Honeycomb With Enhanced In-Plane Impact Resistance
,”
Compos. Struct.
,
208
, pp.
758
770
. 10.1016/j.compstruct.2018.10.024
12.
Qiao
,
J. X.
, and
Chang
,
Q. C.
,
2015
, “
Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051007
. 10.1115/1.4030007
13.
Bahaloo
,
H.
, and
Li
,
Y. N.
,
2019
, “
Micropolar Modeling of Auxetic Chiral Lattices With Tunable Internal Rotation
,”
ASME J. Appl. Mech.
,
86
(
4
), p.
041002
. 10.1115/1.4042428
14.
Broccolo
,
S. D.
,
Susanna
,
L.
, and
Fabrizio
,
S.
,
2017
, “
AUXHEX—A Kirigami Inspired Zero Poisson’s Ratio Cellular Structure
,”
Compos. Struct.
,
176
, pp.
433
441
. 10.1016/j.compstruct.2017.05.050
15.
Patiballa
,
S. K.
, and
Girish
,
K.
,
2018
, “
Qualitative Analysis and Conceptual Design of Planar Metamaterials With Negative Poisson’s Ratio
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021006
. 10.1115/1.4038977
16.
Xie
,
Y.
,
Lu
,
D. F.
, and
Yu
,
J. J.
,
2017
, “
Bimaterial Micro-Structured Annulus With Zero Thermal Expansion Coefficient
,”
Proceedings of the IDETC/CIE
,
Cleveland, OH
,
Aug. 6–9
, ASME Paper No: DETC2017-68142, p.
V05AT08A020
. 10.1115/detc2017-68142
17.
Cribb
,
J. L.
,
1968
, “
Shrinkage and Thermal Expansion of a Two Phase Material
,”
Nature
,
220
(
5167
), pp.
576
577
. 10.1038/220576a0
18.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
. 10.1063/1.117961
19.
Wei
,
K.
,
Chen
,
H. S.
,
Pei
,
Y. M.
, and
Fang
,
D. N.
,
2016
, “
Planar Lattices With Tailorable Coefficient of Thermal Expansion and High Stiffness Based on Dual-Material Triangle Unit
,”
J. Mech. Phys. Solids
,
86
, pp.
173
191
. 10.1016/j.jmps.2015.10.004
20.
Steeves
,
C.
,
dos Santos e Lucato
,
S.
,
He
,
M.
,
Antinucci
,
E.
,
Hutchinson
,
J.
, and
Evans
,
A.
,
2007
, “
Concepts for Structurally Robust Materials That Combine Low Thermal Expansion With High Stiffness
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1803
1822
. 10.1016/j.jmps.2007.02.009
21.
Wei
,
K.
,
Peng
,
Y.
,
Wen
,
W. B.
,
Pei
,
Y. M.
, and
Fang
,
D. N.
,
2017
, “
Tailorable Thermal Expansion of Lightweight and Robust Dual-Constituent Triangular Lattice Material
,”
ASME J. Appl. Mech.
,
84
(
10
), p.
101006
. 10.1115/1.4037589
22.
Jefferson
,
G.
,
Parthasarathy
,
T.
, and
Kerans
,
R.
,
2009
, “
Tailorable Thermal Expansion Hybrid Structures
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2372
2387
. 10.1016/j.ijsolstr.2009.01.023
23.
Woodcock
,
D. A. W.
,
Lightfoot
,
P.
,
Villaescusa
,
L. A.
,
Mariajose Díazcabañas
,
A.
,
Camblor
,
M. A.
, and
Engberg
,
D.
,
1999
, “
Negative Thermal Expansion in the Siliceous Zeolites Chabazite and itq-4: A Neutron Powder Diffraction Study
,”
Chem. Mater.
,
11
(
9
), pp.
2508
2514
. 10.1021/cm991047q
24.
Grima
,
J. N.
,
Jackson
,
R.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2000
, “
Do Zeolites Have Negative Poisson’s Ratios?
,”
Adv. Mater.
,
12
(
24
), pp.
1912
1918
. 10.1002/1521-4095(200012)12:24<1912::AID-ADMA1912>3.0.CO;2-7
25.
Huang
,
C.
, and
Chen
,
L.
,
2016
, “
Negative Poisson’s Ratio in Modern Functional Materials
,”
Adv. Mater.
,
28
(
37
), pp.
8079
8096
. 10.1002/adma.201601363
26.
Ha
,
C. S.
,
Hestekin
,
E.
,
Li
,
J.
,
Plesha
,
M. E.
, and
Lakes
,
R. S.
,
2015
, “
Controllable Thermal Expansion of Large Magnitude in Chiral Negative Poisson’s Ratio Lattices
,”
Phys. Status Solidi
,
252
(
7
), pp.
1431
1434
. 10.1002/pssb.201552158
27.
Ng
,
C. K.
,
Saxena
,
K. K.
,
Das
,
R.
, and
Flores
,
E. I. S.
,
2017
, “
On the Anisotropic and Negative Thermal Expansion From Dual-Material Re-Entrant-Type Cellular Metamaterials
,”
J. Mater. Sci.
,
52
(
2
), pp.
899
912
. 10.1007/s10853-016-0385-7
28.
Ai
,
L.
, and
Gao
,
X. L.
,
2018
, “
Three-Dimensional Metamaterials With a Negative Poison’s Ratio and a Non-Positive Coefficient of Thermal Expansion
,”
Int. J. Mech. Sci.
,
135
, pp.
101
113
. 10.1016/j.ijmecsci.2017.10.042
29.
Yang
,
Y. F.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021001
. 10.1115/1.4038969
30.
Hopkins
,
J. B.
,
Song
,
Y. P.
,
Lee
,
H.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2016
, “
Polytope Sector-Based Synthesis and Analysis of Microstructural Architectures With Tunable Thermal Conductivity and Expansion
,”
ASME J. Mech. Des.
,
138
(
5
), p.
051401
. 10.1115/1.4032809
31.
Jiang
,
Y.
,
Liu
,
Z. Y.
,
Matsuhisa
,
N.
,
Qi
,
D. P.
,
Leow
,
W. R.
,
Yang
,
H.
,
Yu
,
J. C.
,
Chen
,
G.
,
Liu
,
Y.
,
Wan
,
C.
, and
Liu
,
Z.
,
2018
, “
Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors
,”
Adv. Mater.
,
30
(
12
), p.
1706589
. 10.1002/adma.201706589
32.
Norrie
,
D. H.
, and
Vries
,
G.
,
1973
,
The Finite Element Method: Fundamentals and Applications
,
Academic Press
,
New York
.
33.
Shen
,
B.
,
Stephansson
,
O.
, and
Rinne
,
M.
,
2014
,
Modelling Rock Fracturing Processes: A Fracture Mechanics Approach Using FRACOD
,
Springer
,
Dordrecht, Netherlands
.
34.
Xie
,
Y.
,
Pei
,
X.
, and
Yu
,
J. J.
,
2018
, “
Double-Layer Sandwich Annulus With Ultra-Low Thermal Expansion
,”
Compos. Struct.
,
203
, pp.
709
717
. 10.1016/j.compstruct.2018.07.075
35.
Ashby
,
M. F.
,
2005
,
Materials Selection in Mechanical Design
, 3rd ed.,
Butterworth-Heinemann
,
Burlington, MA
.
36.
Hopkins
,
J. B.
,
Shaw
,
L. A.
,
Weisgraber
,
T. H.
,
Farquar
,
G. R.
,
Harvey
,
C. D.
, and
Spadaccini
,
C. M.
,
2016
, “
Design of Nonperiodic Microarchitectured Materials That Achieve Graded Thermal Expansions
,”
ASME J. Mech. Robot
,
8
(
5
), p.
051010
. 10.1115/1.4032248
You do not currently have access to this content.