Abstract

Compared with a rigid robotic hand, the soft robotic hand has the advantages of strong safety and high adaptability, but it has problems such as insufficient grasping force, poor attitude retention ability, and poor dynamic stability. Therefore, it is of great significance to introduce a variable stiffness mechanism so that the soft robotic hand can flexibly change its stiffness under different task requirements, thus improving its grasping stability. An innovative design of a novel particle clogging variable stiffness soft robotic hand, featuring superior stiffness performance, is presented in this article, which incorporates a novel particle-clogging variable stiffness structure coupled with a ball-jointed skeleton and particles, resulting in a 29.4% stiffness enhancement over traditional designs lacking a ball-jointed skeleton, while boasting a 217.7% increase in single-finger fingertip force, and an elevation of embracing grasping performance by 110.56% along with a 280.2% improvement in fingertip grasp performance, thereby significantly improving grasping force, stability and effectiveness for daily food, and tool grasping.

References

1.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
.
2.
Kai Yap
,
H.
,
Cho Hong Goh
,
J.
, and
Yeow
,
C.-H.
,
2016
, “
A Low-Profile Soft Robotic Sixth-Finger for Grasp Compensation in Hand-Impaired Patients
,”
ASME J. Med. Devices
,
10
(
3
), p.
030914
.
3.
Wang
,
Y.
,
Hao
,
T.
,
Liu
,
Y.
,
Xiao
,
H.
,
Liu
,
S.
, and
Zhu
,
H.
,
2024
, “
Anthropomorphic Soft Hand: Dexterity, Sensing, and Machine Learning
,”
Actuators
,
13
(
3
), p.
84
.
4.
Huang
,
X.
,
Zhang
,
C.
,
Feng
,
W.
,
Zhang
,
X.
,
Zhang
,
D.
, and
Liu
,
Y.
,
2024
, “
A Bionic Starfish Adsorption Crawling Soft Robot
,”
J. Bionic Eng.
,
21
(
1
), pp.
149
165
.
5.
Xie
,
Z.
,
Mohanakrishnan
,
M.
,
Wang
,
P.
,
Liu
,
J.
,
Xin
,
W.
,
Tang
,
Z.
,
Wen
,
L.
, and
Laschi
,
C.
,
2023
, “
Soft Robotic Arm With Extensible Stiffening Layer
,”
IEEE Robot. Autom. Lett.
,
8
(
6
), pp.
3597
3604
.
6.
Huang
,
Q.
,
Wang
,
P.
,
Wang
,
Y.
,
Xia
,
X.
, and
Li
,
S.
,
2022
, “
Kinematic Analysis of Bionic Elephant Trunk Robot Based on Flexible Series-Parallel Structure
,”
Biomimetics
,
7
(
4
), p.
228
.
7.
Cai
,
S.
,
Pan
,
L.
,
Bao
,
G.
,
Bai
,
W.
,
Yang
,
Q.
, and
Tang
,
C.
,
2021
, “
Pneumatic Webbed Soft Gripper for Unstructured Grasping
,”
Int. J. Agric. Biol. Eng.
,
14
(
4
), pp.
145
151
.
8.
Piazza
,
C.
,
Simon
,
A. M.
,
Turner
,
K. L.
,
Miller
,
L. A.
,
Catalano
,
M. G.
,
Bicchi
,
A.
, and
Hargrove
,
L. J.
,
2020
, “
Exploring Augmented Grasping Capabilities in a Multi-Synergistic Soft Bionic Hand
,”
J. Neuroeng. Rehabil.
,
17
(
116
), pp.
1
16
.
9.
Ren
,
T.
,
Li
,
Y.
,
Liu
,
Q.
,
Chen
,
Y.
,
Yang
,
S. X.
,
Yuan
,
H.
,
Li
,
Y.
, and
Yang
,
Y.
,
2023
, “
Novel Bionic Soft Robotic Hand With Dexterous Deformation and Reliable Grasping
,”
IEEE Trans. Instrum. Meas.
,
72
(
1
), pp.
1
10
.
10.
Park
,
J.
,
Lee
,
Y.
,
Cho
,
S.
,
Choe
,
A.
,
Yeom
,
J.
,
Ro
,
Y. G.
,
Kim
,
J.
,
Kang
,
D.-h.
,
Lee
,
S.
, and
Ko
,
H.
,
2024
, “
Soft Sensors and Actuators for Wearable Human–Machine Interfaces
,”
Chem. Rev.
,
124
(
4
), pp.
1464
1534
.
11.
Dou
,
W.
,
Zhong
,
G.
,
Cao
,
J.
,
Shi
,
Z.
,
Peng
,
B.
, and
Jiang
,
L.
,
2021
, “
Soft Robotic Manipulators: Designs, Actuation, Stiffness Tuning, and Sensing
,”
Adv. Mater. Technol.
,
6
(
9
), p.
2100018
.
12.
Negrello
,
F.
,
Friedl
,
W.
,
Grioli
,
G.
,
Garabini
,
M.
,
Brock
,
O.
,
Bicchi
,
A.
,
Roa
,
M. A.
, and
Catalano
,
M. G.
,
2020
, “
Benchmarking Hand and Grasp Resilience to Dynamic Loads
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1780
1787
.
13.
Shan
,
Y.
,
Zhao
,
Y.
,
Wang
,
H.
,
Dong
,
L.
,
Pei
,
C.
,
Jin
,
Z.
,
Sun
,
Y.
, and
Liu
,
T.
,
2023
, “
Variable Stiffness Soft Robotic Gripper: Design, Development, and Prospects
,”
Bioinspir. Biomim.
,
19
(
1
), p.
011001
.
14.
Hu
,
H.
,
Xie
,
Z.
,
Liu
,
Y.
,
Liu
,
Y.
,
Yang
,
G.
,
Xia
,
J.
, and
Liu
,
H.
,
2023
, “
A Variable Stiffness Actuation Based Robotic Hand Designed for Interactions
,”
IEEE/ASME Trans. Mechatron.
,
29
(
1
), pp.
249
259
.
15.
Deng
,
Y.
, and
Liu
,
J.
,
2014
, “
Flexible Mechanical Joint as Human Exoskeleton Using Low-Melting-Point Alloy
,”
ASME J. Med. Devices
,
8
(
4
), p.
044506
.
16.
Deng
,
C.
,
Dong
,
J.
,
Guo
,
Y.
,
Sun
,
X.
,
Song
,
Z.
, and
Li
,
Z.
,
2023
, “
Amoeboid Soft Robot Based on Multi-Material Composite 3D Printing Technology
,”
J. Magn. Magn. Mater.
,
588
(
1
), p.
171390
.
17.
Wang
,
S.
,
Zhu
,
Q.
,
Xiong
,
R.
, and
Chu
,
J.
,
2014
, “
Flexible Robotic Spine Actuated by Shape Memory Alloy
,”
Int. J. Adv. Robot. Syst.
,
11
(
4
), p.
56
.
18.
Liu
,
Y.
,
Liu
,
X.
,
Yuan
,
Z.
, and
Liu
,
J.
,
2019
, “
Design and Analysis of Spring Parallel Variable Stiffness Actuator Based on Antagonistic Principle
,”
Mech. Mach. Theory
,
140
(
1
), pp.
44
58
.
19.
Liu
,
Y.
,
Yoo
,
U.
,
Ha
,
S.
,
Atashzar
,
S. F.
, and
Alambeigi
,
F.
,
2021
, “
Influence of Antagonistic Tensions on Distributed Friction Forces of Multisegment Tendon-Driven Continuum Manipulators With Irregular Geometry
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
2418
2428
.
20.
Liu
,
W.
,
Jing
,
Z.
,
Huang
,
J.
,
Dun
,
X.
,
Qiao
,
L.
,
Leung
,
H.
, and
Chen
,
W.
,
2023
, “
An Inchworm-Snake Inspired Flexible Robotic Manipulator With Multisection SMA Actuators for Object Grasping
,”
IEEE Trans. Ind. Electron.
,
70
(
12
), pp.
12616
12625
.
21.
Jiang
,
P.
,
Yang
,
Y.
,
Chen
,
M. Z.
, and
Chen
,
Y.
,
2019
, “
A Variable Stiffness Gripper Based on Differential Drive Particle Jamming
,”
Bioinspir. Biomim.
,
14
(
3
), p.
036009
.
22.
Bai
,
B.
,
Yang
,
G.-C.
,
Li
,
T.
, and
Yang
,
G.-S.
,
2019
, “
A Thermodynamic Constitutive Model With Temperature Effect Based on Particle Rearrangement for Geomaterials
,”
Mech. Mater.
,
139
(
1
), p.
103180
.
23.
Wei
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Li
,
Y.
,
2016
, “
A Soft Robotic Spine With Tunable Stiffness Based on Integrated Ball Joint and Particle Jamming
,”
Mechatronics
,
33
(
1
), pp.
84
92
.
24.
Stephenson
,
K.
,
2005
,
Introduction to Circle Packing: The Theory of Discrete Analytic Functions
,
Cambridge University Press
,
New York
.
25.
Bruder
,
D.
, and
Wood
,
R. J.
,
2021
, “
The Chain-Link Actuator: Exploiting the Bending Stiffness of Mckibben Artificial Muscles to Achieve Larger Contraction Ratios
,”
IEEE Robot. Autom. Lett.
,
7
(
1
), pp.
542
548
.
You do not currently have access to this content.