Abstract

Triply periodic minimal surface (TPMS) possesses diverse morphological characteristics, such as pore sizes, porosity, and structural types. Integrating TPMS-based microchannels into micro-cellular cooling structures is advantageous for designing and controlling fluid characteristics within mold cooling channels. However, it is still difficult to design multi-morphology TPMS-based cooling microchannels that conform to the external shapes of injection molds. This work proposes a 3D multi-morphology TPMS-based design method that transforms 3D constraints into a combination of 2D constraints. First, a beta growth algorithm based on closed-loop constraints is proposed to transition different morphologies smoothly on the plane. Subsequently, a transition optimization algorithm along the normal direction of the plane is introduced to smoothly transition multi-morphology TPMS-based microchannels in all directions. With this layered approach, multi-morphology microchannels can be obtained with first-order geometric continuity under complex shape constraints. Finally, several TPMS-based conformal cooling structures are designed for an automotive hood cover. The results of finite element simulations show that the cooling structures generated by the proposed method have a better cooling effect than the conformal channels. It can be concluded that multi-morphology TPMS-based structures perform better by contrast with conformal channels as the average temperature of the cooling surface decreases by 8.48 K, and the standard deviation of temperature distribution decreases by 24.65%.

References

1.
Park
,
K.
,
Seo
,
Y. S.
, and
Sohn
,
D. H.
,
2011
, “
Automated Mold Heating System Using High Frequency Induction With Feedback Temperature Control
,”
Int. Polym. Process.
,
26
(
5
), pp.
490
497
.
2.
Liang
,
J.-Z.
,
2002
, “
An Optimal Design of Cooling System for Injection Mold
,”
Polym.-Plast. Technol. Eng.
,
41
(
2
), pp.
261
271
.
3.
Li
,
D.
,
Dai
,
N.
,
Tang
,
Y.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2019
, “
Design and Optimization of Graded Cellular Structures With Triply Periodic Level Surface-Based Topological Shapes
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071402
.
4.
Attarzadeh
,
R.
,
Rovira
,
M.
, and
Duwig
,
C.
,
2021
, “
Design Analysis of the ‘Schwartz D’ Based Heat Exchanger: A Numerical Study
,”
Int. J. Heat Mass Transfer
,
177
, p.
121415
.
5.
El Khadiri
,
I.
,
Abouelmajd
,
M.
,
Zemzami
,
M.
,
Hmina
,
N.
,
Lagache
,
M.
, and
Belhouideg
,
S.
,
2024
, “
Comprehensive Analysis of Flow and Heat Transfer Performance in Triply Periodic Minimal Surface (TPMS) Heat Exchangers Based on Fischer-Koch S, PMY, FRD, and Gyroid Structures
,”
Int. Commun. Heat Mass Transfer
,
156
, p.
107617
.
6.
Wang
,
J.
,
Chen
,
K.
,
Zeng
,
M.
,
Ma
,
T.
,
Wang
,
Q.
, and
Cheng
,
Z.
,
2023
, “
Assessment of Flow and Heat Transfer of Triply Periodic Minimal Surface Based Heat Exchangers
,”
Energy
,
282
, p.
128806
.
7.
Cheng
,
Z.
,
Li
,
X.
,
Xu
,
R.
, and
Jiang
,
P.
,
2021
, “
Investigations on Porous Media Customized by Triply Periodic Minimal Surface: Heat Transfer Correlations and Strength Performance
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105713
.
8.
Iyer
,
J.
,
Moore
,
T.
,
Nguyen
,
D.
,
Roy
,
P.
, and
Stolaroff
,
J.
,
2022
, “
Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Based on Triply Periodic Minimal and Periodic Nodal Surfaces
,”
Appl. Therm. Eng.
,
209
, p.
118192
.
9.
Liang
,
D.
,
Shi
,
C.
,
Li
,
W.
,
Chen
,
W.
, and
Chyu
,
M. K.
,
2023
, “
Design, Flow Characteristics and Performance Evaluation of Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces
,”
Int. J. Heat Mass Transfer
,
201
, p.
123620
.
10.
Wang
,
J.
,
Chen
,
K.
,
Zeng
,
M.
,
Ma
,
T.
,
Wang
,
Q.
, and
Cheng
,
Z.
,
2023
, “
Investigation on Flow and Heat Transfer in Various Channels Based on Triply Periodic Minimal Surfaces (TPMS)
,”
Energy Convers. Manage.
,
283
, p.
116955
.
11.
Ibhadode
,
O.
,
2024
, “
The Effects of Cell Stretching on the Thermal and Flow Characteristics of Triply Periodic Minimal Surfaces
,”
Int. Commun. Heat Mass Transfer
,
153
, p.
107364
.
12.
Oh
,
S.-H.
,
Ha
,
J.-W.
, and
Park
,
K.
,
2022
, “
Adaptive Conformal Cooling of Injection Molds Using Additively Manufactured TPMS Structures
,”
Polymers
,
14
(
1
), p.
181
.
13.
Chi
,
Z.-P.
,
Yang
,
G.-H.
, and
Wang
,
Q.-H.
,
2024
, “
Multi-morphological Design of TPMS-Based Microchannels for Thermal Performance Optimization
,”
Appl. Therm. Eng.
,
255
, p.
124050
.
14.
Lei
,
H.-Y.
,
Li
,
J.-R.
,
Xu
,
Z.-J.
, and
Wang
,
Q.-H.
,
2020
, “
TPMS-Based Porous Structures Modelling Driven by Pore Characteristic Parameters
,”
J. Comput.-Aided Des. Comput. Graph.
,
32
(
01
), pp.
156
163+172
.
15.
Yang
,
N.
,
Quan
,
Z.
,
Zhang
,
D.
, and
Tian
,
Y.
,
2014
, “
Multi-morphology Transition Hybridization CAD Design of Minimal Surface Porous Structures for Use in Tissue Engineering
,”
Comput.-Aided Des.
,
56
, pp.
11
21
.
16.
Yoo
,
D.-J.
, and
Kim
,
K.-H.
,
2015
, “
An Advanced Multi-morphology Porous Scaffold Design Method Using Volumetric Distance Field and Beta Growth Function
,”
Int. J. Precis. Eng. Manuf.
,
16
(
9
), pp.
2021
2032
.
17.
Günther
,
F.
,
Wagner
,
M.
,
Pilz
,
S.
,
Gebert
,
A.
, and
Zimmermann
,
M.
,
2022
, “
Design Procedure for Triply Periodic Minimal Surface Based Biomimetic Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
104871
.
18.
Ren
,
F.
,
Zhang
,
C.
,
Liao
,
W.
,
Liu
,
T.
,
Li
,
D.
,
Shi
,
X.
,
Jiang
,
W.
, et al
,
2021
, “
Transition Boundaries and Stiffness Optimal Design for Multi-TPMS Lattices
,”
Mater. Des.
,
210
, p.
110062
.
19.
Ozdemir
,
M.
,
Simsek
,
U.
,
Kiziltas
,
G.
,
Gayir
,
C. E.
,
Celik
,
A.
, and
Sendur
,
P.
,
2023
, “
A Novel Design Framework for Generating Functionally Graded Multi-morphology Lattices Via Hybrid Optimization and Blending Methods
,”
Addit. Manuf.
,
70
, p.
103560
.
20.
Feng
,
J.
,
Fu
,
J.
,
Shang
,
C.
,
Lin
,
Z.
,
Niu
,
X.
, and
Li
,
B.
,
2020
, “
Efficient Generation Strategy for Hierarchical Porous Scaffolds With Freeform External Geometries
,”
Addit. Manuf.
,
31
, p.
100943
.
21.
Lee
,
J.-W.
,
Oh
,
S.-H.
,
Jeon
,
E.
,
Kim
,
J.
, and
Park
,
K.
,
2022
, “
Functional Gradation of the Morphological Properties of TPMS Channel for Enhanced Flow Performance
,”
Mater. Des.
,
224
, p.
111413
.
22.
Oh
,
S.-H.
,
An
,
C.-H.
,
Seo
,
B.
,
Kim
,
J.
,
Park
,
C. Y.
, and
Park
,
K.
,
2023
, “
Functional Morphology Change of TPMS Structures for Design and Additive Manufacturing of Compact Heat Exchangers
,”
Addit. Manuf.
,
76
, p.
103778
.
23.
Yoo
,
D.-J.
,
2012
, “
Heterogeneous Porous Scaffold Design for Tissue Engineering Using Triply Periodic Minimal Surfaces
,”
Int. J. Precis. Eng. Manuf.
,
13
(
4
), pp.
527
537
.
24.
Yoo
,
D.
,
2012
, “
Heterogeneous Minimal Surface Porous Scaffold Design Using the Distance Field and Radial Basis Functions
,”
Med. Eng. Phys.
,
34
(
5
), pp.
625
639
.
25.
Fu
,
J.
,
Ding
,
J.
,
Zhang
,
L.
,
Qu
,
S.
,
Song
,
X.
, and
Fu
,
M. W.
,
2023
, “
Development of Conformal Shell Lattices Via Laser Powder Bed Fusion and Unraveling Their Mechanical Responses Via Modeling and Experiments
,”
Addit. Manuf.
,
62
, p.
103406
.
26.
Chi
,
Z.-P.
,
Wang
,
Q.-H.
,
Li
,
J.-R.
, and
Xie
,
H.-L.
,
2023
, “
A Conformal Design Approach of TPMS-Based Porous Microchannels With Freeform Boundaries
,”
ASME J. Mech. Des.
,
145
(
10
), p.
102001
.
27.
Wang
,
Y.
,
2007
, “
Periodic Surface Modeling for Computer Aided Nano Design
,”
Comput. Aided Des.
,
39
(
3
), pp.
179
189
.
28.
Xu
,
C.-Y.
,
Li
,
J.-R.
,
Wang
,
Q.-H.
, and
Hu
,
G.-H.
,
2019
, “
Contour Parallel Tool Path Planning Based on Conformal Parameterisation Utilising Mapping Stretch Factors
,”
Int. J. Prod. Res.
,
57
(
1
), pp.
1
15
.
29.
Yang
,
G.-H.
,
Wu
,
L.
,
Wang
,
Q.-H.
, and
Chi
,
Z.-P.
,
2023
, “
Multi-morphological Design of TPMS-Based Microchannels With Freeform Boundary Constraints
,”
J. Zhejiang Univ.
,
50
(
6
), pp.
795
802
.
You do not currently have access to this content.