Abstract

Compliant mechanisms can be designed to exhibit a variety of force–deflection curves. Demonstrating a specific force behavior is an integral part of many of their applications. In this work, we select several fundamental force profiles and present compliant mechanisms that can achieve them. These force profiles are predicted using mathematical models that assume specific boundary conditions. When creating physical mechanisms, it can be often difficult to create ideal boundary conditions, particularly for mechanisms that experience axial forces. This is demonstrated first through a cantilever beam, which exhibits a linear force profile and experiences no axial forces so its boundary conditions and expected force profile are relatively easy to achieve. A more complicated case that does experience compressive axial forces—a mirrored parallel-guiding mechanism—is then examined to demonstrate its greater difficulty in achieving ideal boundary conditions. The effects of nonideal boundary conditions are then systematically explored to determine how altering specific boundary conditions from a mirrored parallel-guiding mechanism significantly alters its force profile. We also demonstrate how achieving specific force profiles is affected by factors that are difficult to control, including a small difference in force application location. Using these methods, a designer can select a compliant mechanism to achieve a specific force profile and can better predict how the force profile is affected by testing and boundary conditions.

References

1.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.
2.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley and Sons, Inc
,
New York
.
3.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
4.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
5.
Cammarata
,
A.
,
Lacagnina
,
M.
, and
Sequenzia
,
G.
,
2019
, “
Alternative Elliptic Integral Solution to the Beam Deflection Equations for the Design of Compliant Mechanisms
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
,
13
(
2
), pp.
499
505
.
6.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
7.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
8.
Company
,
T. E. K.
,
2003
,
Kodak’s Ergonomic Design for People at Work
,
John Wiley & Sons
,
New York
.
9.
Roubicek
,
C.
,
Sargent
,
B.
,
Garcia
,
V.
, and
Howell
,
L.
,
2022
, “
Using Compliant Implants to Reduce Post-Operative Pain in Pectus Excavatum Correction
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7: 46th Mechanisms and Robotics Conference (MR)
,
St. Louis, MO
,
Aug. 14–17
.
10.
Conti
,
F.
, and
Khatib
,
O.
,
2009
, “
A New Actuation Approach for Haptic Interface Design
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
834
848
.
11.
Mazursky
,
A.
,
Koo
,
J.-H.
, and
Yang
,
T.-H.
,
2019
, “
Design, Modeling, and Evaluation of a Slim Haptic Actuator Based on Electrorheological Fluid
,”
J. Intell. Mater. Syst. Struct.
,
30
(
17
), pp.
2521
2533
.
12.
Yeh
,
C.-H.
,
Su
,
F.-C.
,
Shan
,
Y.-S.
,
Dosaev
,
M.
,
Selyutskiy
,
Y.
,
Goryacheva
,
I.
, and
Ju
,
M.-S.
,
2020
, “
Application of Piezoelectric Actuator to Simplified Haptic Feedback System
,”
Sens. Actuators A: Phys.
,
303
, p.
111820
.
13.
Hawks
,
J. C.
,
Colton
,
M. B.
, and
Howell
,
L. L.
,
2015
, “
A Variable-Stiffness Straight-Line Compliant Mechanism
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 39th Mechanisms and Robotics Conference
,
Boston, MA
,
Aug. 2–5
.
14.
Gillespie
,
R. B.
,
Shin
,
T.
,
Huang
,
F.
, and
Trease
,
B.
,
2008
, “
Automated Characterization and Compensation for a Compliant Mechanism Haptic Device
,”
IEEE/ASME Trans. Mechatron.
,
13
(
1
), pp.
136
146
.
15.
Goldfarb
,
M.
, and
Speich
,
J. E.
,
1999
, “
A Well-Behaved Revolute Flexure Joint for Compliant Mechanism Design
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
424
429
.
16.
O’Modhrain
,
M. S.
, and
Gillespie
,
B.
,
1997
, “
The Moose: A Haptic User Interface for Blind Persons
,”
Third WWW6 Conference
.
17.
Zhai
,
Y.
,
Wang
,
Z.
,
Kwon
,
K.-S.
,
Cai
,
S.
,
Lipomi
,
D. J.
, and
Ng
,
T. N.
,
2021
, “
Printing Multi-Material Organic Haptic Actuators
,”
Adv. Mater.
,
33
(
19
), p.
2002541
.
18.
Burdea
,
G. C.
,
2000
, “
Haptics Issues in Virtual Environments
,”
Proceedings Computer Graphics International 2000
,
Geneva, Switzerland
,
June 19–24
, IEEE, pp.
295
302
.
19.
Kim
,
H.
,
Kim
,
M.
, and
Lee
,
W.
,
2016
, “
Hapthimble: A Wearable Haptic Device Towards Usable Virtual Touch Screen
,”
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
,
San Jose, CA
,
May 7–12
, pp.
3694
3705
.
20.
Gurari
,
N.
,
Kuchenbecker
,
K. J.
, and
Okamura
,
A. M.
,
2009
, “
Stiffness Discrimination With Visual and Proprioceptive Cues
,”
World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
,
Mar. 18–20
, IEEE, pp.
121
126
.
21.
Kim
,
S.
, and
Lee
,
G.
,
2013
, “
Haptic Feedback Design for a Virtual Button Along Force-Displacement Curves
,”
Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology
,
St. Andrews, Scotland, UK
,
Oct. 8–11
, pp.
91
96
..
22.
Usevitch
,
N. S.
, and
Stanley
,
A. A.
,
2019
, “
Cutting the Cord: Soft Haptic Devices Without a Pressure Source
,”
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, IEEE, pp.
49
55
.
23.
Parkinson
,
M. B.
,
Howell
,
L. L.
, and
Cox
,
J. J.
,
1997
, “
A Parametric Approach to the Optimization-Based Design of Compliant Mechanisms
,”
Proceedings of the ASME 1997 Design Engineering Technical Conferences. Volume 2: 23rd Design Automation Conference
,
Sacramento, CA
,
Sept. 14–17
.
24.
Tolman
,
K. A.
,
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2016
, “
Compliant Constant-Force Linear-Motion Mechanism
,”
Mech. Mach. Theory
,
106
, pp.
68
79
.
25.
Liang
,
J.
,
Zhang
,
X.
,
Zhu
,
B.
,
Zhang
,
H.
, and
Wang
,
R.
,
2023
, “
Topology Optimization Method for Designing Compliant Mechanism With Given Constant Force Range
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061008
.
26.
Ding
,
B.
,
Li
,
X.
, and
Li
,
Y.
,
2022
, “
Configuration Design and Experimental Verification of a Variable Constant-Force Compliant Mechanism
,”
Robotica
,
40
(
10
), pp.
3463
3475
.
27.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
,
1994
, “
Methodology for the Design of Compliant Mechanisms Employing Type Synthesis Techniques With Example
,”
Proceedings of the ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium
,
Minneapolis, MN
,
Sept. 11–14
.
28.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
.
29.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
30.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
31.
Bilancia
,
P.
, and
Berselli
,
G.
,
2020
, “
Design and Testing of a Monolithic Compliant Constant Force Mechanism
,”
Smart Mater. Struct.
,
29
(
4
), p.
044001
.
32.
Liao
,
Y.-C.
,
Kim
,
S.
,
Lee
,
B.
, and
Oulasvirta
,
A.
,
2020
, “
Button Simulation and Design via FDVV Models
,”
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
,
Honolulu, HI
,
Apr. 25–30
, pp.
1
14
.
33.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
J.
McCarthy
, ed.,
Springer
,
London
, pp.
189
216
.
34.
Morgenroth
,
D. C.
,
Roland
,
M.
,
Pruziner
,
A. L.
, and
Czerniecki
,
J. M.
,
2018
, “
Transfemoral Amputee Intact Limb Loading and Compensatory Gait Mechanics During Down Slope Ambulation and the Effect of Prosthetic Knee Mechanisms
,”
Clin. Biomech.
,
55
, pp.
65
72
.
35.
Sanderson
,
D. J.
, and
Martin
,
P. E.
,
1997
, “
Lower Extremity Kinematic and Kinetic Adaptations in Unilateral Below-Knee Amputees During Walking
,”
Gait Posture
,
6
(
2
), pp.
126
136
.
36.
Janbaz
,
S.
,
Bobbert
,
F.
,
Mirzaali
,
M. J.
, and
Zadpoor
,
A.
,
2019
, “
Ultra-Programmable Buckling-Driven Soft Cellular Mechanisms
,”
Mater. Horiz.
,
6
(
6
), pp.
1138
1147
.
37.
Wittwer
,
J. W.
,
Baker
,
M. S.
, and
Howell
,
L. L.
,
2006
, “
Simulation, Measurement, and Asymmetric Buckling of Thermal Microactuators
,”
Sens. Actuators A: Phys.
,
128
(
2
), pp.
395
401
.
38.
Peterson
,
B. T.
,
Hardin
,
T. J.
,
Pomeroy
,
A. W.
,
Hopkins
,
J. B.
, and
Clites
,
T. R.
,
2023
, “
Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending
,”
IEEE/ASME Trans. Mechatron.
,
29
(
2
), pp.
913
923
.
You do not currently have access to this content.