Abstract

This paper proposes a general kinematic-based design method for optimizing the side-mounted leg mechanism of BJTUBOT, a novel multi-mission quadrupedal Earth rover. The focus issue lies in designing structural improvements that not only enhance its kinematic performance but also prevent singularity, all while meeting the demands for miniaturization and lightweight without deviating from the original leg design concept. To solve this issue, a novel 3-UPRU&PPRR mechanism is envisaged based on the original configuration. Around the unique structural features of this mechanism, its inverse kinematic solution and Jacobian matrix are calculated, and a coupled motion relation between a key limb and its moving platform (MP) is presented. In order to achieve singularity avoidance, some typical singularity configurations based on line geometry analysis are given. In accordance with this result, an initial configuration for multi-objective dimensional optimization is presented. To further enhance its kinematic performance, we introduce the use of the GCI (global conditional index) performance at extreme positions as one of the optimization criteria based on the NSGA-II (Non-dominated Sorting Genetic Algorithm) algorithm, and directly measuring the crowding distance using the position vector of the U (universal) joints on the moving platform. This optimized mechanism prototype is demonstrated in a single-leg Adams simulation, which exhibits good velocity mapping effects and displacement accuracy. Finally, a new BJTUBOT prototype was constructed based on the optimized leg, and its flexibility was tested with various classical forms of motions. The workflow in this paper significantly improves the leg performance under the current design needs.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Schilling
,
K.
, and
Jungius
,
C.
,
1996
, “
Mobile Robots for Planetary Exploration
,”
Control Eng. Pract.
,
4
(
4
), pp.
513
524
.
2.
Li
,
C.
,
Liu
,
J.
,
Ren
,
X.
,
Zuo
,
W.
,
Tan
,
X.
,
Wen
,
W.
,
Li
,
H.
, et al
,
2015
, “
The Chang’e 3 Mission Overview
,”
Space Sci. Rev.
,
190
(
1–4
), pp.
85
101
.
3.
Arvidson
,
R. E.
,
Iagnemma
,
K. D.
,
Maimone
,
M.
,
Fraeman
,
A. A.
,
Zhou
,
F.
,
Heverly
,
M. C.
,
Bellutta
,
P.
, et al
,
2017
, “
Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater
,”
J. Field Robot.
,
34
(
3
), pp.
495
518
.
4.
Wu
,
Y.
,
Guo
,
S.
,
Li
,
L.
,
Niu
,
L.
, and
Li
,
X.
,
2023
, “
Design of a Novel Side-Mounted Leg Mechanism With High Flexibility for a Multi-Mission Quadruped Earth Rover BJTUBOT
,”
Front. Mech. Eng.
,
18
(
2
).
5.
Lindemann
,
R. A.
, and
Voorhees
,
C. J.
,
2005
, “
Mars Exploration Rover Mobility Assembly Design, Test and Performance
,”
Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics
,
Waikoloa, HI
,
Oct. 12
, Vol. 1, pp. 450–455http://dx.doi.org/ 10.1109/ICSMC.2005.1571187.
6.
Rankin
,
A.
,
Maimone
,
M.
,
Biesiadecki
,
J.
,
Patel
,
N.
,
Levine
,
D.
, and
Toupet
,
O.
,
2021
, “
Mars Curiosity Rover Mobility Trends During the First 7 Years
,”
J. Field Robot.
,
38
(
5
), pp.
759
800
.
7.
Patel
,
N.
,
Slade
,
R.
, and
Clemmet
,
J.
,
2010
, “
The ExoMars Rover Locomotion Subsystem
,”
J. Terramech.
,
47
(
4
), pp.
227
242
.
8.
Chen
,
Z.
,
Zou
,
M.
,
Pan
,
D.
,
Chen
,
L.
,
Liu
,
Y.
,
Yuan
,
B.
, and
Zhang
,
Q.
,
2023
, “
Study on Climbing Strategy and Analysis of Mars Rover
,”
J. Field Robot.
,
40
(
5
), pp.
1172
1186
.
9.
Bouman
,
A.
,
Ginting
,
M. F.
,
Alatur
,
N.
,
Palieri
,
M.
,
Fan
,
D. D.
,
Touma
,
T.
,
Pailevanian
,
T.
,
2020
, “
Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion
,”
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24–Jan. 24
, pp.
2518
2525
.
10.
Gan
,
L.
,
Grizzle
,
J. W.
,
Eustice
,
R. M.
, and
Ghaffari
,
M.
,
2022
, “
Energy-Based Legged Robots Terrain Traversability Modeling via Deep Inverse Reinforcement Learning
,”
IEEE Robot. Autom. Lett.
,
7
(
4
), pp.
8807
8814
.
11.
Lee
,
J.
,
Hwangbo
,
J.
,
Wellhausen
,
L.
,
Koltun
,
V.
, and
Hutter
,
M.
,
2020
, “
Learning Quadrupedal Locomotion Over Challenging Terrain
,”
Sci. Robot.
,
5
(
47
), p.
eabc5986
.
12.
Lindqvist
,
B.
,
Karlsson
,
S.
,
Koval
,
A.
,
Tevetzidis
,
I.
,
Haluška
,
J.
,
Kanellakis
,
C.
,
Agha-mohammadi
,
A.
, and
Nikolakopoulos
,
G.
,
2022
, “
Multimodality Robotic Systems: Integrated Combined Legged-Aerial Mobility for Subterranean Search-and-Rescue
,”
Robot. Auton. Syst.
,
154
, p.
104134
.
13.
Mattamala
,
M.
,
Chebrolu
,
N.
, and
Fallon
,
M.
,
2022
, “
An Efficient Locally Reactive Controller for Safe Navigation in Visual Teach and Repeat Missions
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
2353
2360
.
14.
Endo
,
G.
, and
Hirose
,
S.
,
2000
, “
Study on Roller-Walker (Multi-Mode Steering Control and Self-Contained Locomotion)
,”
Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)
,
San Francisco, CA
,
Apr. 24–28
,
vol. 3, pp. 2808–2814
.
15.
Bellegarda
,
G.
, and
Byl
,
K.
,
2019
, “
Training in Task Space to Speed Up and Guide Reinforcement Learning
,”
Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
2693
2699
http://dx.doi.org/doi: 10.1109/IROS40897.2019.8967995.
16.
Geilinger
,
M.
,
Winberg
,
S.
, and
Coros
,
S.
,
2020
, “
A Computational Framework for Designing Skilled Legged-Wheeled Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
3674
3681
.
17.
Bjelonic
,
M.
,
Grandia
,
R.
,
Geilinger
,
M.
,
Harley
,
O.
,
Medeiros
,
V. S.
,
Pajovic
,
V.
,
Jelavic
,
E.
,
Coros
,
S.
, and
Hutter
,
M.
,
2022
, “
Offline Motion Libraries and Online MPC for Advanced Mobility Skills
,”
Int. J. Robot. Res.
,
41
(
9–10
), pp.
903
924
.
18.
SunSpiral
,
V.
,
Wheeler
,
D. W.
,
Chavez-Clemente
,
D.
, and
Mittman
,
D.
,
2012
, “
Development and Field Testing of the FootFall Planning System for the ATHLETE Robots
,”
J. Field Robot.
,
29
(
3
), pp.
483
505
.
19.
Cordes
,
F.
,
Kirchner
,
F.
, and
Babu
,
A.
,
2018
, “
Design and Field Testing of a Rover With an Actively Articulated Suspension System in a Mars Analog Terrain
,”
J. Field Robot.
,
35
(
7
), pp.
1149
1181
.
20.
Rudin
,
N.
,
Kolvenbach
,
H.
,
Tsounis
,
V.
, and
Hutter
,
M.
,
2022
, “
Cat-Like Jumping and Landing of Legged Robots in Low Gravity Using Deep Reinforcement Learning
,”
IEEE Trans. Robot.
,
38
(
1
), pp.
317
328
.
21.
Lin
,
Y.
,
Tian
,
Y.
,
Xue
,
Y.
,
Han
,
S.
,
Zhang
,
H.
,
Lai
,
W.
, and
Xiao
,
X.
,
2021
, “
Innovative Design and Simulation of a Transformable Robot with Flexibility and Versatility, RHex-T3
,”
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
.
22.
Peng
,
H.
,
Wang
,
J.
,
Wang
,
S.
,
Shen
,
W.
,
Shi
,
D.
, and
Liu
,
D.
,
2020
, “
Coordinated Motion Control for a Wheel-Leg Robot With Speed Consensus Strategy
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
1
.
23.
Han
,
Y.
,
Zhou
,
C.
, and
Guo
,
W.
,
2021
, “
Singularity Loci, Bifurcated Evolution Routes, and Configuration Transitions of Reconfigurable Legged Mobile Lander From Adjusting, Landing, to Roving
,”
ASME J. Mech. Robot.
,
13
(
4
), p.
040903
.
24.
Tang
,
H.
,
Zhang
,
J. W.
,
Pan
,
L.
, and
Zhang
,
D.
,
2023
, “
Optimum Design for a New Reconfigurable Two-Wheeled Self-Balancing Robot Based on Virtual Equivalent Parallel Mechanism
,”
ASME J. Mech. Des.
,
145
(
5
), p.
053302
.
25.
Gao
,
Z.
,
Zhang
,
D.
,
Hu
,
X.
, and
Ge
,
Y.
,
2009
, “
Design, Analysis, and Stiffness Optimization of a Three Degree of Freedom Parallel Manipulator
,”
Robotica
,
28
(
3
), pp.
349
357
.
26.
Li
,
Y.
,
Huang
,
J.
, and
Tang
,
H.
,
2012
, “
A Compliant Parallel XY Micromotion Stage With Complete Kinematic Decoupling
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
3
), pp.
538
553
.
27.
Rubbert
,
L.
,
Renaud
,
P.
, and
Gangloff
,
J.
,
2012
, “
Design and Optimization for a Cardiac Active Stabilizer Based on Planar Parallel Compliant Mechanisms
,”
Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering
,
ASME
,
Nantes, France
,
July 2–4
, pp.
235
244
.
28.
Quintero-Riaza
,
H. F.
,
Mejía-Calderón
,
L. A.
, and
Díaz-Rodríguez
,
M.
,
2019
, “
Synthesis of Planar Parallel Manipulators Including Dexterity, Force Transmission and Stiffness Index
,”
Mech. Based Des. Struct. Mach.
,
47
(
6
), pp.
680
702
.
29.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-Furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
, pp.
36
53
.
30.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
31.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139-140
, pp.
1
14
.
32.
Chen
,
Y.
,
Xu
,
R.
,
Lu
,
C.
,
Liu
,
K.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Multi-Stability of the Hexagonal Origami Hypar Based on Group Theory and Symmetry Breaking
,”
Int. J. Mech. Sci.
,
247
.
33.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2002
, “
Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators With Identical Limb Structures
,”
Int. J. Robot. Res.
,
21
(
9
), pp.
799
810
.
34.
Zhang
,
D.
, and
Gosselin
,
C. M.
,
2002
, “
Kinetostatic Modeling of Parallel Mechanisms With a Passive Constraining leg and Revolute Actuators
,”
Mech. Mach. Theory
,
37
(
6
), pp.
599
617
.
35.
Yang
,
C.
,
Ye
,
W.
, and
Li
,
Q.
,
2003
, “
Type Synthesis of 4-DOF Parallel Manipulators
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol. 1, pp. 755–760.
36.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2004
, “
Enumeration of a Class of Overconstrained Mechanisms Using the Theory of Reciprocal Screws
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1175
1187
.
37.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2005
, “
Type Synthesis of 5-DOF Parallel Manipulators Based on Screw Theory
,”
J. Robot. Syst.
,
22
(
10
), pp.
535
547
.
38.
Gan
,
D.
,
Liao
,
Q.
,
Dai
,
J. S.
, and
Wei
,
S.
,
2010
, “
Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,”
Robotica
,
28
(
7
), pp.
1065
1072
.
39.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Robot. Autom.
,
6
(
3
), pp.
281
290
.
40.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
41.
Hao
,
F.
, and
McCarthy
,
J. M.
,
1998
, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Robot. Syst.
,
15
(
1
), pp.
43
55
.
42.
Merlet
,
J.-P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.
43.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
44.
Angeles
,
J.
, and
Carlos
,
S. L.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
45.
Feng
,
Y.
,
Fang
,
L.
,
Bu
,
W.
, and
Kang
,
J.
,
2020
, “
Multi-Objective Optimization for Design of Redundant Serial Robots
,”
Proceedings of the 2020 Chinese Automation Congress (CAC)
,
Shanghai, China
,
Nov. 6–8
.
46.
Verma
,
S.
,
Pant
,
M.
, and
Snasel
,
V.
,
2021
, “
A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems
,”
IEEE Access
,
9
, pp.
57757
57791
.
You do not currently have access to this content.