Abstract

Semi-active adjustable constant force mechanisms (ACFMs) are an emerging alternative in applications where energy-efficient control of constant force environments is required. However, there is a lack of design strategies in the literature for semi-active ACFMs. This study addresses this gap by presenting a design strategy for ACFMs that semi-actively tunes the constant force by structural control. A design framework is presented, which consists of an optimization of a high slenderness large stroke constant force mechanism (CFM) followed by a parametric study on adjusting constant force through slenderness reduction by repositioning the boundary condition location. The design framework was able to change constant force ranging from two to four times with a stroke of 11–26% of the mechanism footprint. A selected design with a larger force magnitude was fabricated and experimentally tested, demonstrating a change in constant force of 2.01 times, which is comparable to that of active control designs and improved compactness, i.e., stroke of 11% of the footprint of the mechanism. In conclusion, the proposed ACFM design framework maximizes the initial CFM stroke and achieves constant force tuning by changing beam slenderness, resulting in compact and efficient ACFM designs.

References

1.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
399
406
.
2.
Liu
,
Y.
,
Zhang
,
Y.
, and
Xu
,
Q.
,
2017
, “
Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
476
486
.
3.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Castelli
,
V. P.
,
2009
, “
Design of a Single-Acting Constant-Force Actuator Based on Dielectric Elastomers
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031007
.
4.
Tolman
,
K. A.
,
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2016
, “
Compliant Constant-Force Linear-Motion Mechanism
,”
Mech. Mach. Theory
,
106
, pp.
68
79
.
5.
Ma
,
F.
,
Chen
,
G.
, and
Wang
,
H.
,
2020
, “
Large-Stroke Constant-Force Mechanisms Utilizing Second Buckling Mode of Flexible Beams: Evaluation Metrics and Design Approach
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103303
.
6.
Lan
,
C. C.
,
Wang
,
J. H.
, and
Chen
,
Y. H.
,
2010
, “
A Compliant Constant-Force Mechanism for Adaptive Robot End-Effector Operations
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
2131
2136
.
7.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
8.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
,
2005
, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1101
1112
.
9.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
10.
Bilancia
,
P.
, and
Berselli
,
G.
,
2020
, “
Design and Testing of a Monolithic Compliant Constant Force Mechanism
,”
Smart Mater. Struct.
,
29
(
4
), p.
044001
.
11.
Rehman
,
T. U.
,
Qaiser
,
Z.
,
Ou
,
H.
,
Yi
,
H.
, and
Johnson
,
S.
,
2022
, “
Exploring and Exploiting Path Based Design Optimization of a Constant Force Mechanism
,”
Mech. Mach. Theory
,
176
, p.
104976
.
12.
Nathan
,
R. H.
,
1985
, “
A Constant Force Generation Mechanism
,”
J. Mech., Trans., Automat. Design
,
107
(
4
), pp.
508
512
.
13.
Ye
,
T.
,
Ling
,
J.
,
Kang
,
X.
,
Feng
,
Z.
, and
Xiao
,
X.
,
2021
, “
A Novel Two-Stage Constant Force Compliant Microgripper
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053302
.
14.
Qaiser
,
Z.
,
Rehman
,
T. U.
, and
Johnson
,
S.
,
2023
, “
Slenderness Tuning to Adjust and Regulate Constant Force Mechanisms (STAR-CFM)
,”
Mech. Mach. Theory
,
186
, p.
105351
.
15.
Lan
,
C.
, and
Wang
,
J.
,
2011
, “
Design of Adjustable Constant-Force Forceps for Robot-Assisted Surgical Manipulation
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
386
391
.
16.
van de Sande
,
W. W. P. J.
,
Ali
,
A.
, and
Radaelli
,
G.
,
2020
, “
Design and Evaluation of a Passive Constant Force Mechanism for a Cardiac Ablation Catheter
,”
ASME J. Med. Devices
,
15
(
2
), p.
021003
.
17.
Miao
,
Y.
, and
Zheng
,
J.
,
2020
, “
Optimization Design of Compliant Constant-Force Mechanism for Apple Picking Actuator
,”
Comput. Electron. Agricult.
,
170
, p.
105232
.
18.
Sánchez-Salinas
,
S.
,
Núñez-Torres
,
C.
,
López-Martínez
,
J.
,
García-Vallejo
,
D.
, and
Muyor
,
J. M.
,
2019
, “
Design and Analysis of a Constant-Force Bench Press
,”
Mech. Mach. Theory
,
142
, p.
103612
.
19.
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2006
, “
Substantially Constant-Force Exercise Machine
,”
US Patent No. 7060012
.
20.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
21.
Weight
,
B. L.
,
Mattson
,
C. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2006
, “
Configuration Selection, Modeling, and Preliminary Testing in Support of Constant Force Electrical Connectors
,”
J. Electronic Pack.
,
129
(
3
), pp.
236
246
.
22.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
23.
Nahar
,
D. R.
, and
Sugar
,
T.
,
2003
, “
Compliant Constant-Force Mechanism With a Variable Output for Micro/Macro Applications
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol. 1, pp.
318
323
.
24.
Kuo
,
Y.-L.
, and
Lan
,
C.-C.
,
2019
, “
A Two-Dimensional Adjustable Constant-Force Mechanism
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063304
.
25.
Liu
,
Y.
,
Yu
,
D.-P.
, and
Yao
,
J.
,
2016
, “
Design of an Adjustable Cam Based Constant Force Mechanism
,”
Mech. Mach. Theory
,
103
, pp.
85
97
.
26.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
27.
Ou
,
H.
,
Yi
,
H.
,
Qaiser
,
Z.
,
Ur Rehman
,
T.
, and
Johnson
,
S.
,
2022
, “
A Structural Optimization Framework to Design Compliant Constant Force Mechanisms With Large Energy Storage
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021008
.
28.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
.
29.
Qaiser
,
Z.
,
Kang
,
L.
, and
Johnson
,
S.
,
2020
, “
Design and Development of a Constant Force Non-Linear Spring (CF-NLS) for Energy Storage
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
, p. V010T10A008.
30.
Radaelli
,
G.
, and
Herder
,
J. L.
,
2014
, “
Isogeometric Shape Optimization for Compliant Mechanisms With Prescribed Load Paths
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
,
p. V05AT08A046
.
31.
Gere
,
J. M.
, and
Goodno
,
B. J.
,
2012
,
Mechanics of Materials
,
Cengage Learning
,
Stamford, CT
.
32.
Zeng
,
X.
,
Hurd
,
C.
,
Su
,
H.-J.
,
Song
,
S.
, and
Wang
,
J.
,
2020
, “
A Parallel-Guided Compliant Mechanism With Variable Stiffness Based on Layer Jamming
,”
Mech. Mach. Theory
,
148
, p.
103791
.
33.
Rehman
,
T. U.
,
Qaiser
,
Z.
, and
Johnson
,
S.
,
2019
, “
Tuning Bifurcation Loads in Bistable Composites With Tunable Stiffness Mechanisms
,”
Mech. Mach. Theory
,
142
, p.
103585
.
34.
McKenna
,
F.
,
2011
, “
OpenSees: A Framework for Earthquake Engineering Simulation
,”
Comput. Sci. Eng.
,
13
(
4
), pp.
58
66
.
35.
Dowling
,
N. E.
,
1993
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Pretnice-Hall, Inc.
,
NJ
.
36.
Hashin
,
Z.
,
1980
,
Fatigue Failure Criteria for Unidirectional Fiber Composites
,
Department of Materials Science and Engineering, Pennsylvania University Philadelphia
,
Philadelphia, PA
.
37.
Mackay
,
A. B.
,
Smith
,
D. G.
,
Magleby
,
S. P.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2012
, “
Metrics for Evaluation and Design of Large-Displacement Linear-Motion Compliant Mechanisms
,”
ASME J. Mech. Des.
,
134
(
1
), p. 011008.
You do not currently have access to this content.