Abstract

The enhancement of midsole compressive energy return is associated with improved running economy. Traditional midsole materials such as ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), and polyether block amide (PEBA) foams typically exhibit hardening force–displacement characteristics. On the other hand, a midsole with softening properties, which can be achieved through compliant constant force mechanisms (CFMs), can provide significant benefits in terms of energy storage and return. This study presents the development of such a midsole, incorporating 3D printed TPU CFM designs derived through structural optimization. The mechanical properties under cyclic loading were evaluated and compared with those of commercially available running shoes with state-of-the-art PEBA foam midsoles, specifically the Nike ZoomX Vaporfly Next% 2 (NVP). Our custom midsole demonstrated promising mechanical performance. At similar deformation levels, the new design increased energy storage by 58.1% and energy return by 47.0%, while reducing the peak compressive force by 24.3%. As per our understanding, this is the first study to prove that the inclusion of CFMs in the structural design of 3D printed midsoles can significantly enhance energy return.

References

1.
Hoogkamer
,
W.
,
Kipp
,
S.
,
Frank
,
J. H.
,
Farina
,
E. M.
,
Luo
,
G.
, and
Kram
,
R.
,
2018
, “
A Comparison of the Energetic Cost of Running in Marathon Racing Shoes
,”
Sports Med.
,
48
(
4
), pp.
1009
1019
.
2.
Barnes
,
K. R.
, and
Kilding
,
A. E.
,
2019
, “
A Randomized Crossover Study Investigating the Running Economy of Highly-Trained Male and Female Distance Runners in Marathon Racing Shoes Versus Track Spikes
,”
Sports Med.
,
49
(
2
), pp.
331
342
.
3.
Rodrigo-Carranza
,
V.
,
González-Mohíno
,
F.
,
Santos del Cerro
,
J.
,
Santos-Concejero
,
J.
, and
González-Ravé
,
J. M.
,
2021
, “
Influence of Advanced Shoe Technology on the Top 100 Annual Performances in Men’s Marathon From 2015 to 2019
,”
Sci. Rep.
,
11
(
1
), p.
22458
.
4.
Hunter
,
I.
,
McLeod
,
A.
,
Valentine
,
D.
,
Low
,
T.
,
Ward
,
J.
, and
Hager
,
R.
,
2019
, “
Running Economy, Mechanics, and Marathon Racing Shoes
,”
J. Sports Sci.
,
37
(
20
), pp.
2367
2373
.
5.
Hébert-Losier
,
K.
,
Finlayson
,
S. J.
,
Driller
,
M. W.
,
Dubois
,
B.
,
Esculier
,
J. F.
, and
Beaven
,
C. M.
,
2022
, “
Metabolic and Performance Responses of Male Runners Wearing 3 Types of Footwear: Nike Vaporfly 4%, Saucony Endorphin Racing Flats, and Their Own Shoes
,”
J. Sport Health Sci.
,
11
(
3
), pp.
275
284
.
6.
Healey
,
L. A.
, and
Hoogkamer
,
W.
,
2022
, “
Longitudinal Bending Stiffness Does Not Affect Running Economy in Nike Vaporfly Shoes
,”
J. Sport Health Sci.
,
11
(
3
), pp.
285
292
.
7.
Hoogkamer
,
W.
,
Kipp
,
S.
, and
Kram
,
R.
,
2019
, “
The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study
,”
Sports Med.
,
49
(
1
), pp.
133
143
.
8.
Worobets
,
J.
,
Wannop
,
J. W.
,
Tomaras
,
E.
, and
Stefanyshyn
,
D.
,
2014
, “
Softer and More Resilient Running Shoe Cushioning Properties Enhance Running Economy
,”
Footwear Sci.
,
6
(
3
), pp.
147
153
.
9.
Kerdok
,
A. E.
,
Biewener
,
A. A.
,
McMahon
,
T. A.
,
Weyand
,
P. G.
, and
Herr
,
H. M.
,
2002
, “
Energetics and Mechanics of Human Running on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol. (1985)
,
92
(
2
), pp.
469
478
.
10.
Brückner
,
K.
,
Odenwald
,
S.
,
Schwanitz
,
S.
,
Heidenfelder
,
J.
, and
Milani
,
T.
,
2010
, “
Polyurethane-Foam Midsoles in Running Shoes—Impact Energy and Damping
,”
Procedia Eng.
,
2
(
2
), pp.
2789
2793
.
11.
Wang
,
L.
,
Hong
,
Y.
, and
Li
,
J. X.
,
2012
, “
Durability of Running Shoes With Ethylene Vinyl Acetate or Polyurethane Midsoles
,”
J. Sports Sci.
,
30
(
16
), pp.
1787
1792
.
12.
Jamshidian
,
M.
,
Boddeti
,
N.
,
Rosen
,
D. W.
, and
Weeger
,
O.
,
2020
, “
Multiscale Modelling of Soft Lattice Metamaterials: Micromechanical Nonlinear Buckling Analysis, Experimental Verification, and Macroscale Constitutive Behaviour
,”
Int. J. Mech. Sci.
,
188
, p.
105956
.
13.
Chen
,
Y.
,
Li
,
T.
,
Jia
,
Z.
,
Scarpa
,
F.
,
Yao
,
C.-W.
, and
Wang
,
L.
,
2018
, “
3D Printed Hierarchical Honeycombs With Shape Integrity Under Large Compressive Deformations
,”
Mater. Des.
,
137
, pp.
226
234
.
14.
Lan
,
C.
,
Wang
,
J.
, and
Chen
,
Y.
, “
A Compliant Constant-Force Mechanism for Adaptive Robot End-Effector Operations
,”
Proc. 2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
2131
2136
.
15.
Wang
,
J. Y.
, and
Lan
,
C. C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
16.
Ou
,
H.
,
Yi
,
H.
,
Qaiser
,
Z.
,
Ur Rehman
,
T.
, and
Johnson
,
S.
,
2022
, “
A Structural Optimization Framework to Design Compliant Constant Force Mechanisms With Large Energy Storage
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021008
.
17.
Rehman
,
T. U.
,
Qaiser
,
Z.
,
Ou
,
H.
,
Yi
,
H.
, and
Johnson
,
S.
,
2022
, “
Exploring and Exploiting Path Based Design Optimization of a Constant Force Mechanism
,”
Mech. Mach. Theory
,
176
, p.
104976
.
18.
Ma
,
F.
,
Chen
,
G.
, and
Wang
,
H.
,
2020
, “
Large-Stroke Constant-Force Mechanisms Utilizing Second Buckling Mode of Flexible Beams: Evaluation Metrics and Design Approach
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103303
.
19.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
20.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
21.
Li
,
M.
, and
Cheng
,
W.
,
2018
, “
Design and Experimental Validation of a Large-Displacement Constant-Force Mechanism
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051007
.
22.
Wang
,
P. Y.
, and
Xu
,
Q. S.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
23.
Dong
,
G.
,
Tessier
,
D.
, and
Zhao
,
Y. F.
,
2019
, “
Design of Shoe Soles Using Lattice Structures Fabricated by Additive Manufacturing
,”
Proc. Des. Soc.: Int. Conf. Eng. Des.
,
1
(
1
), pp.
719
728
.
24.
Zolfagharian
,
A.
,
Lakhi
,
M.
,
Ranjbar
,
S.
, and
Bodaghi
,
M.
,
2021
, “
Custom Shoe Sole Design and Modeling Toward 3D Printing
,”
Int. J. Bioprint.
,
7
(
4
), pp.
169
178
.
25.
Wang
,
Z.
,
Srinivasa
,
A.
,
Reddy
,
J. N.
, and
Dubrowski
,
A.
,
2022
, “
Topology Optimization of Lightweight Structures With Application to Bone Scaffolds and 3D Printed Shoes for Diabetics
,”
ASME J. Appl. Mech
,
89
(
4
), p.
041009
.
26.
Maharana
,
P.
,
Sonawane
,
J.
,
Belehalli
,
P.
, and
Ananthasuresh
,
G. K.
,
2022
, “
Self-Offloading Therapeutic Footwear Using Compliant Snap-Through Arches
,”
Wear. Tech.
,
3
, p.
e7
.
27.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
.
28.
Franz
,
J. R.
,
Wierzbinski
,
C. M.
, and
Kram
,
R.
,
2012
, “
Metabolic Cost of Running Barefoot Versus Shod: Is Lighter Better?
,”
Med. Sci. Sports Exercise
,
44
(
8
), pp.
1519
1525
.
29.
Frederick
,
E.
,
1984
, “
Physiological and Ergonomics Factors in Running Shoe Design
,”
Appl. Ergon.
,
15
(
4
), pp.
281
287
.
30.
Matijevich
,
E. S.
,
Honert
,
E. C.
,
Fan
,
Y.
,
Lam
,
G.
, and
Nigg
,
B. M.
,
2022
, “
A Foot and Footwear Mechanical Power Theoretical Framework: Towards Understanding Energy Storage and Return in Running Footwear
,”
J. Biomech.
,
141
, p.
111217
.
31.
Schwanitz
,
S.
,
Möser
,
S.
, and
Odenwald
,
S.
,
2010
, “
Comparison of Test Methods to Quantify Shock Attenuating Properties of Athletic Footwear
,”
Procedia Eng.
,
2
(
2
), pp.
2805
2810
.
32.
van der Worp
,
H.
,
Vrielink
,
J. W.
, and
Bredeweg
,
S. W.
,
2016
, “
Do Runners Who Suffer Injuries Have Higher Vertical Ground Reaction Forces Than Those Who Remain Injury-Free? A Systematic Review and Meta-Analysis
,”
Br. J. Sports Med.
,
50
(
8
), pp.
450
457
.
33.
Malisoux
,
L.
,
Delattre
,
N.
,
Meyer
,
C.
,
Gette
,
P.
,
Urhausen
,
A.
, and
Theisen
,
D.
,
2021
, “
Effect of Shoe Cushioning on Landing Impact Forces and Spatiotemporal Parameters During Running: Results From a Randomized Trial Including 800 + Recreational Runners
,”
Eur. J. Sport Sci.
,
21
(
7
), pp.
985
993
.
34.
Baltich
,
J.
,
Maurer
,
C.
, and
Nigg
,
B. M.
,
2015
, “
Increased Vertical Impact Forces and Altered Running Mechanics With Softer Midsole Shoes
,”
PLoS One
,
10
(
4
), p.
e0125196
.
35.
Surjadi
,
J. U.
,
Gao
,
L.
,
Du
,
H.
,
Li
,
X.
,
Xiong
,
X.
,
Fang
,
N. X.
, and
Lu
,
Y.
,
2019
, “
Mechanical Metamaterials and Their Engineering Applications
,”
Adv. Eng. Mater.
,
21
(
3
), p.
1800864
.
36.
Bus
,
S. A.
,
Valk
,
G. D.
,
van Deursen
,
R. W.
,
Armstrong
,
D. G.
,
Caravaggi
,
C.
,
Hlavácek
,
P.
,
Bakker
,
K.
, and
Cavanagh
,
P. R.
,
2008
, “
The Effectiveness of Footwear and Offloading Interventions to Prevent and Heal Foot Ulcers and Reduce Plantar Pressure in Diabetes: A Systematic Review
,”
Diabetes/Metab. Res. Rev.
,
24
(
Suppl 1
), pp.
S162
S180
.
37.
Pokkalla
,
D. K.
,
Poh
,
L. H.
, and
Quek
,
S. T.
,
2021
, “
Isogeometric Shape Optimization of Missing Rib Auxetics With Prescribed Negative Poisson’s Ratio Over Large Strains Using Genetic Algorithm
,”
Int. J. Mech. Sci.
,
193
, p.
106169
.
You do not currently have access to this content.