Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The nexus of two relatively recent technologies, additive manufacturing and unmanned aircraft systems (UAS), has enabled new and unique capabilities that have only started to be realized in integrated systems. This article explores and quantifies the impact of 3D printing parts for UAS, or entire UAS systems, on an agent platform, while this agent travels to multiple locations as part of a mission objective. The fully printed or enhanced UAS can then be released at launch points farther away from the goal locations. This, in turn, can accelerate mission completion times and reduce travel costs depending upon the ratio between vehicle speed and 3D printing rate. Thousands of scenarios are optimized across the design space to minimize the travel path length for the agent platform as a result of 3D printing en route to the locations of interest. Results indicate that based on the print capability and agent travel speed, an exponential decay in the amount of travel distance of the agent platform occurs. For unity ratios of print speed and agent speed in the considered design space, a decrease of 55% in the total required distance of our agent is observed. This reduction in total travel distance can reduce time, fuel, cost, and other aspects including other environmental and social impacts. A generalized optimization formulation is also presented at the end to enable similar analyses with other en route range-extending technology such as battery charging.

References

1.
Oh
,
D.
, and
Han
,
J.
,
2021
, “
Smart Search System of Autonomous Flight UAVs for Disaster Rescue
,”
Sensors
,
21
(
20
), pp.
1
19
.
2.
Sacramento
,
D.
,
Pisinger
,
D.
, and
Ropke
,
S.
,
2019
, “
An Adaptive Large Neighborhood Search Metaheuristic for the Vehicle Routing Problem With Drones
,”
Transp. Res. Part C: Emerg. Technol.
,
102
, pp.
289
315
.
3.
McCall
,
B.
,
2019
, “
Sub-Saharan Africa Leads the Way in Medical Drones
,”
Lancet (London, UK)
,
393
(
10166
), pp.
17
18
.
4.
Christensen
,
C.
, and
Salmon
,
J.
,
2022
, “
Principles for Small-Unit sUAS Tactical Deployment From a Combat-Simulating Agent-Based Model Analysis
,”
Expert. Syst. Appl.
,
190
, p.
116156
.
5.
Ling
,
H.
,
Luo
,
H.
,
Bai
,
L.
,
Zhu
,
T.
,
Wang
,
Q.
, and
Yu
,
L.
,
2020
, “
Cooperative Loitering Munition Swarm Online Patrolling Route Planning With Nonlinear Seeker Measurement
,”
Math. Probl. Eng.
,
2020
(
1
), p.
7646920
.
6.
Pecho
,
P.
,
Ažaltovič
,
V.
,
Kandera
,
B.
, and
Bugaj
,
M.
,
2019
, “
Introduction Study of Design and Layout of UAVs 3D Printed Wings in Relation to Optimal Lightweight and Load Distribution
,”
Transp. Res. Procedia
,
40
, pp.
861
868
.
7.
Mademlis
,
I.
,
Mygdalis
,
V.
,
Nikolaidis
,
N.
,
Montagnuolo
,
M.
,
Negro
,
F.
,
Messina
,
A.
, and
Pitas
,
I.
,
2019
, “
High-Level Multiple-UAV Cinematography Tools for Covering Outdoor Events
,”
IEEE Trans. Broadcast.
,
65
(
3
), pp.
627
635
.
8.
Isaacs
,
J. T.
, and
Hespanha
,
J. P.
,
2013
, “
Dubins Traveling Salesman Problem With Neighborhoods: A Graph-Based Approach
,”
Algorithms
,
6
(
1
), pp.
84
99
.
9.
Mennell
,
W. K.
,
2009
, “
Heuristics for Solving Three Routing Problems: Close-Enough Traveling Salesman Problem, Close-Enough Vehicle Routing Problem, and Sequence-Dependent Team Orienteering Problem
,”
ProQuest dissertations and theses
, p.
2900
.
10.
De Berg
,
M.
,
Gudmundsson
,
J.
,
Katz
,
M. J.
,
Levcopoulos
,
C.
,
Overmars
,
M. H.
, and
Van Der Stappen
,
A. F.
,
2005
, “
TSP With Neighborhoods of Varying Size
,”
J. Algorithms
,
57
(
1
), pp.
22
36
.
11.
Dumitrescu
,
A.
, and
Mitchell
,
J. S.
,
2003
, “
Approximation Algorithms for TSP With Neighborhoods in the Plane
,”
J. Algorithms
,
48
(
1
), pp.
135
159
.
12.
Dror
,
M.
,
Lubiw
,
A.
,
Efrat
,
A.
, and
Mitchell
,
J. S.
,
2003
, “
Touring a Sequence of Polygons
,”
Conference Proceedings of the Annual ACM Symposium on Theory of Computing
,
San Diego, CA
,
June 9–11
, pp.
473
482
.
13.
Mohsan
,
S. A. H.
,
Khan
,
M. A.
,
Noor
,
F.
,
Ullah
,
I.
, and
Alsharif
,
M. H.
,
2022
, “
Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review
,”
Drones
,
6
(
6
).
14.
Colombi
,
J.
,
Bentz
,
B.
,
Recker
,
R.
,
Lucas
,
B.
, and
Freels
,
J.
,
2017
, “
Attritable Design Trades Reliability and Cost Implications for Unmanned Aircraft
,”
2017 Annual IEEE International Systems Conference (SysCon)
,
Montreal, QC, Canada
,
Apr. 24–27
,
IEEE
pp.
1
8
.
15.
Department of Defense
,
2023
, “
Annual Energy Performance, Resilience, and Readiness Report
,” https://www.acq.osd.mil/eie/Downloads/IE/FY22 AEPRR Report.pdf
16.
Hapon
,
V.
,
Teplyk
,
Y.
, and
Tuz
,
M.
,
2020
, “
Additive Technology in Aircraft Manufacturing
,”
Proc. Natl Aviat. Univ.
,
84
(
3
), pp.
38
43
.
17.
Goh
,
G. D.
,
Agarwala
,
S.
,
Goh
,
G. L.
,
Dikshit
,
V.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2017
, “
Additive Manufacturing in Unmanned Aerial Vehicles (UAVs): Challenges and Potential
,”
Aerospace Sci. Technol.
,
63
, pp.
140
151
.
18.
Goh
,
G. D.
,
Toh
,
W.
,
Yap
,
Y. L.
,
Ng
,
T. Y.
, and
Yeong
,
W. Y.
,
2021
, “
Additively Manufactured Continuous Carbon Fiber-Reinforced Thermoplastic for Topology Optimized Unmanned Aerial Vehicle Structures
,”
Compos. Part B: Eng.
,
216
(
July 2021
), p.
108840
.
19.
Surface, Naval and Atlantic, Force
,
2022
, “
Metal 3D Printer Installed on USS Bataan
,” pp.
1
3
. https://www.navy.mil/Press-Office/News-Stories/Article/3209860/metal-3d-printer-installed-on-uss-bataan/
20.
U.S. Army,
2019
, “
Offense and Defense ADP 3-90
,” pp.
2018
2020
. https://www.moore.army.mil/mssp/PDF/adp3_90.pdf
21.
Ciolponea
,
C.-A.
,
2022
, “
The Integration of Unmanned Aircraft System (UAS) in Current Combat Operations
,”
Land Forces Acad. Rev.
,
27
(
4
), pp.
333
347
.
22.
Christensen
,
C. D.
,
2020
, “
An Agent-based Decision Support Framework for SUAS Deployment in Small Infantry Units
,”
ProQuest dissertations and theses
.
23.
General Atomics
,
2023
, “
GA-ASI Partners with Divergent Technologies, Inc
,” https://www.ga-asi.com/ga-asi-partners-with-divergent-technologies-inc
24.
General Atomics
,
2020
, “
GA-ASI Conducts Sparrowhawk sUAS Flight Tests
,” https://www.ga-asi.com/ga-asi-conducts-sparrowhawk-suas-flight-tests
25.
Najmon
,
J. C.
,
Raeisi
,
S.
, and
Tovar
,
A.
,
2019
,
Review of Additive Manufacturing Technologies and Applications in the Aerospace Industry
,
Elsevier Inc
,
New York
, pp.
7
31
.
26.
Pant
,
M.
,
Pidge
,
P.
,
Nagdeve
,
L.
, and
Kumar
,
H.
,
2021
, “
A Review of Additive Manufacturing in Aerospace Application
,”
Revue des Composites et des Materiaux Avances
,
31
, pp.
109
115
.
27.
Yusuf
,
S. M.
,
Cutler
,
S.
, and
Gao
,
N.
,
2019
, “
Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry
,”
Metals
,
9
(
12
), p.
1286
.
28.
Svetlizky
,
D.
,
Das
,
M.
,
Zheng
,
B.
,
Vyatskikh
,
A. L.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Eliaz
,
N.
,
2021
, “
Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications
,”
Mater. Today
,
49
, pp.
271
295
.
29.
Dizon
,
J. R. C.
,
Gache
,
C. C. L.
,
Cascolan
,
H. M. S.
,
Cancino
,
L. T.
, and
Advincula
,
R. C.
,
2021
, “
Post-Processing of 3D-Printed Polymers
,”
Technologies
,
9
(
3
), p.
61
.
30.
Ramirez
,
A. S.
,
Marcos
,
M. E. I.
,
Haro
,
F. B.
,
D’Amato
,
R.
,
Sant
,
R.
, and
Porras
,
J.
,
2019
, “
Application of FDM Technology to Reduce Aerodynamic Drag
,”
Rapid. Prototyp. J.
,
25
(
4
), pp.
781
791
.
31.
Dua
,
R.
,
Rashad
,
Z.
,
Spears
,
J.
,
Dunn
,
G.
, and
Maxwell
,
M.
,
2021
, “
Applications of 3D-Printed Peek Via Fused Filament Fabrication: A Systematic Review
,”
Polymers
,
13
(
22
), p.
4046
.
32.
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Paris
,
H.
,
Mbow
,
M. M.
,
Pourroy
,
F.
,
Marin
,
P. R.
,
Vihinen
,
J.
, and
Ellman
,
A.
,
2018
, “
A Conceptual Design and Modeling Framework for Integrated Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
8
), p. 081101.
33.
Panagiotou
,
P.
,
Kaparos
,
P.
, and
Yakinthos
,
K.
,
2014
, “
Winglet Design and Optimization for a MALE UAV Using CFD
,”
Aerospace Sci. Technol.
,
39
, pp.
190
205
.
34.
Rajendran
,
S.
,
2012
, “
Design of Parametric Winglets and Wing Tip Devices—A Conceptual Design Approach
,” p.
71
.
35.
Otto
,
A.
,
Agatz
,
N.
,
Campbell
,
J.
,
Golden
,
B.
, and
Pesch
,
E.
,
2018
, “
Optimization Approaches for Civil Applications of Unmanned Aerial Vehicles (UAVs) or Aerial Drones: A Survey
,”
Networks
,
72
(
4
), pp.
411
458
.
36.
Jensen
,
N. J.
,
Parker
,
G. G.
, and
Blough
,
J. R.
,
2023
, “
Base Vibration Effects on Additive Manufactured Part Quality
,”
Exp. Tech.
,
48
(
1
), pp.
159
170
.
37.
Fulton
,
N. L.
, and
Huynh
,
U. H.-N.
,
2015
, “
Conflict Management: Apollonius in Airspace Design
,”
Safety Sci.
,
72
, pp.
9
22
.
38.
Alatartsev
,
S.
,
Augustine
,
M.
, and
Ortmeier
,
F.
,
2013
, “
Constricting Insertion Heuristic for Traveling Salesman Problem With Neighborhoods
,”
ICAPS 2013—Proceedings of the 23rd International Conference on Automated Planning and Scheduling
, pp.
2
10
.
39.
Bakshi
,
S.
,
Yan
,
Z.
,
Chen
,
D.
,
Qian
,
Q.
, and
Chen
,
Y.
,
2018
, “
A Fast Algorithm on Minimum-Time Scheduling of an Autonomous Ground Vehicle Using a Traveling Salesman Framework
,”
ASME J. Dyn. Syst., Meas. Control
,
140
(
12
), p. 121011.
40.
Arkin
,
E. M.
, and
Hassin
,
R.
,
1994
, “
Approximation Algorithms for the Geometric Covering Salesman Problem
,”
Discrete Appl. Math.
,
55
(
3
), pp.
197
218
.
41.
Dumitrescu
,
A.
, and
Mitchell
,
J. S.
,
2003
, “
Approximation Algorithms for TSP With Neighborhoods in the Plane
,”
J. Algorithms
,
48
(
1
), pp.
135
159
.
42.
of Defense
,
D.
,
2022
, “
Annual Energy Performance, Resilience, and Readiness Report
,” pp.
1
9
.
43.
Stevenson
,
P. D.
,
Mattson
,
C. A.
,
Bryden
,
K. M.
, and
Maccarty
,
N. A.
,
2018
, “
Toward a Universal Social Impact Metric for Engineered Products That Alleviate Poverty
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041404
.
44.
Stevenson
,
P. D.
,
Mattson
,
C. A.
, and
Dahlin
,
E. C.
,
2020
, “
A Method for Creating Product Social Impact Models of Engineered Products
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041101
.
45.
Andrew
,
N.
,
2018
,
Flight Vehicle Design
,
Brigham Young University
,
Provo, UT
.
You do not currently have access to this content.