Abstract

Flexure-based grippers offer an attractive alternative to conventional grippers used in robotics and automation. However, most existing designs appear to suffer from insufficient range of motion, loadability, and support stiffness. This article presents an approach to obtain well-performing flexure hinges for compact anthropomorphic grippers made via metal additive manufacturing. We propose a flexure hinge architecture that achieves a high range of motion despite the challenging combination of a small design space, high Young’s modulus, and limited minimum feature size. Furthermore, we present an optimization procedure to generate suitable tendon-driven designs with high loadability. Using this framework, a flexure hinge with an outer diameter of 21.5 mm and range of motion of ±30 deg is synthesized. For the range of 0–30 deg, simulations show a lateral loadability of 52.5–18.6 N and lateral support stiffness of 12,309–11,130 N/m, determined at a gripper interface located 41.2 mm from the hinge pivot axis. Experiments confirm a loadability of at least 15.4 N and determined a stiffness of 8982 to 9727 N/m for same conditions. The results show that the flexure hinge architecture has large potential for a wide range of applications, while in combination with the optimization procedure, superior designs for tendon-driven grippers can be obtained.

References

1.
Wolf
,
A.
, and
Schunk
,
H.
,
2018
,
Grippers in Motion
, Vol.
5
,
Carl Hanser Verlag
,
München
.
2.
Chua
,
P. Y.
,
Ilschner
,
T.
, and
Caldwell
,
D. G.
,
2003
, “
Robotic Manipulation of Food Products—A Review
,”
Industrial Robot
,
30
(
4
), pp.
345
354
.
3.
Blanes
,
C.
,
Mellado
,
M.
,
Ortiz
,
C.
, and
Valera
,
A.
,
2011
, “
Review. Technologies for Robot Grippers in Pick and Place Operations for Fresh Fruits and Vegetables
,”
Spanish J. Agric. Res.
,
9
(
4
), pp.
1130
1141
.
4.
Bac
,
C. W.
,
van Henten
,
E. J.
,
Hemming
,
J.
, and
Edan
,
Y.
,
2014
, “
Harvesting Robots for High-Value Crops: State-of-the-Art Review and Challenges Ahead
,”
J. Field Rob.
,
31
(
6
), pp.
888
911
.
5.
Monkman
,
G. J.
,
Hesse
,
S.
,
Steinmann
,
R.
, and
Schunk
,
H.
,
2007
,
Robot Grippers
,
Wiley-VCH Verlag
,
Weinheim
.
6.
Hugo
,
P.
,
2013
,
Industrial Grippers: State-of-the-Art and Main Design Characteristics
,
Springer
,
London
, pp.
107
131
.
7.
Lundström
,
G.
,
1974
, “
Industrial Robot Grippers
,”
Ind. Robot
,
1
(
2
), pp.
72
82
.
8.
Chen
,
F.
,
1982
, “
Gripping Mechanisms for Industrial Robots: An Overview
,”
Mech. Mach. Theory.
,
17
(
5
), pp.
299
311
.
9.
Pio Belfiore
,
N.
, and
Pennestrì
,
E.
,
1997
, “
An Atlas of Linkage-Type Robotic Grippers
,”
Mech. Mach. Theory.
,
32
(
7
), pp.
811
833
.
10.
Boubekri
,
N.
, and
Chakraborty
,
P.
,
2002
, “
Robotic Grasping: Gripper Designs, Control Methods and Grasp Configurations—A Review of Research
,”
Integrated Manuf. Syst.
,
13
(
7
), pp.
520
531
.
11.
Ozawa
,
R.
, and
Tahara
,
K.
,
2017
, “
Grasp and Dexterous Manipulation of Multi-Fingered Robotic Hands: A Review From a Control View Point
,”
Adv. Rob.
,
31
(
19–20
), pp.
1030
1050
.
12.
Navas
,
E.
,
Fernández
,
R.
,
Sepúlveda
,
D.
,
Armada
,
M.
, and
Gonzalez-de Santos
,
P.
,
2021
, “
Soft Grippers for Automatic Crop Harvesting: A Review
,”
Sensors
,
21
(
8
), p.
2689
.
13.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons, Inc.
,
New York
.
14.
Martin
,
J.
,
Huard
,
B.
,
Robert
,
M.
, and
Grossard
,
M.
,
2011
, “
Novel Self-Sensing Actuated Joint for Robotic Hands
,”
2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Budapest, Hungary
,
July 3–7
, pp.
475
480
.
15.
Martin
,
J.
,
Huard
,
B.
,
Robert
,
M.
, and
Grossard
,
M.
,
2011
, “
Robotic Hands: Mechatronic Design and Compliance Control of a Self-Sensing Finger Prototype
,”
Computer Methods Biomechan. Biomed. Eng.
,
14
(
S1
), pp.
103
105
.
16.
Belzile
,
B.
, and
Birglen
,
L.
,
2017
, “
Optimal Design of Self-Adaptive Fingers for Proprioceptive Tactile Sensing
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051004
.
17.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
Proceedings of the 10th ESMATS (ESA SP-524)
,
San Sebastian, Spain
,
Sept. 24–26
, pp.
285
288
.
18.
Blanding
,
D.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME Press
,
New York
.
19.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
CRC Press
,
Boca Raton, FL
.
20.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons, Ltd
,
Chichester, UK
.
21.
Lobontiu
,
N.
,
2021
,
Compliant Mechanisms: Design of Flexure Hinges
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
22.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Robot. Res.
,
33
(
5
), pp.
736
752
.
23.
Lotti
,
F.
, and
Vassura
,
G.
,
2002
, “
A Novel Approach to Mechanical Design of Articulated Fingers for Robotic Hands
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Sept. 30–Oct. 4
, Vol. 2, pp.
1687
1692
.
24.
Berselli
,
G.
,
Parvari Rad
,
F.
,
Vertechy
,
R.
, and
Parenti Castelli
,
V.
,
2013
, “
Comparative Evaluation of Straight and Curved Beam Flexures for Selectively Compliant Mechanisms
,”
2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Wollongong, Australia
,
July 9–12
, pp.
1761
1766
.
25.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2007
, “
The SDM Hand as a Prosthetic Terminal Device: A Feasibility Study
,”
2007 IEEE 10th International Conference on Rehabilitation Robotics
,
Noordwijk, The Netherlands
,
June 12–15
, pp.
978
983
.
26.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D Printed Underactuated Hand
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
2737
2743
.
27.
Mutlu
,
R.
,
Alici
,
G.
, and
Spinks
,
G.
,
2015
, “
Effect of Flexure Hinge Type on a 3D Printed Fully Compliant Prosthetic Finger
,”
2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Busan, South Korea
,
July 7–11
, pp.
790
795
.
28.
Hill
,
S.
, and
Canfield
,
S.
,
2016
, “
An Assessment of Fused Deposition Modeling for the Manufacturing of Flexural Pivots in an Anthropomorphic Robotic Hand Design
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. Volume 5B: 40th Mechanisms and Robotics Conference
,
Charlotte, NC
,
Aug. 21–24
,
Paper No. DETC2016-60253
.
29.
Lotti
,
F.
,
Tiezzi
,
P.
,
Vassura
,
G.
,
Biagiotti
,
L.
,
Palli
,
G.
, and
Melchiorri
,
C.
,
2005
, “
Development of UB Hand 3: Early Results
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
4488
4493
.
30.
Berselli
,
G.
,
Piccinini
,
M.
, and
Vassura
,
G.
,
2011
, “
Comparative Evaluation of the Selective Compliance in Elastic Joints for Robotic Structures
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai
,
May 9-13
.
31.
Tavakoli
,
M.
, and
de Almeida
,
A. T.
,
2014
, “
Adaptive Under-Actuated Anthropomorphic Hand: ISR-SoftHand
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
1629
1634
.
32.
Tavakoli
,
M.
,
Batista
,
R.
, and
Sgrigna
,
L.
,
2016
, “
The UC Softhand: Light Weight Adaptive Bionic Hand With a Compact Twisted String Actuation System
,”
Actuators
,
5
(
1
), p.
1
.
33.
Tavakoli
,
M.
,
Sayuk
,
A.
,
Lourenço
,
J.
, and
Neto
,
P.
,
2017
, “
Anthropomorphic Finger for Grasping Applications: 3D Printed Endoskeleton in a Soft Skin
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5
), pp.
2607
2620
.
34.
Martin
,
J.
, and
Robert
,
M.
,
2010
, “
Novel Flexible Pivot With Large Angular Range and Small Center Shift to Be Integrated Into a Bio-Inspired Robotic Hand
,”
Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Philadelphia, PA
,
Sept. 28–Oct. 1
, ASME, Vol. 2, pp.
427
431
.
35.
Martin
,
J.
, and
Robert
,
M.
,
2011
, “
Novel Flexible Pivot With Large Angular Range and Small Center Shift to Be Integrated Into a Bio-Inspired Robotic Hand
,”
J. Intell. Material Syst. Struct.
,
22
(
13
), pp.
1431
1437
.
36.
Garcia
,
L.
,
Naves
,
M.
, and
Brouwer
,
D.
,
2018
, “
3D-Printed Flexure-Based Finger Joints for Anthropomorphic Hands
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid
,
Oct. 1–5
.
37.
Boers
,
B.
,
Naves
,
M.
,
Garcia
,
L.
, and
Brouwer
,
D. M.
,
2018
, “
Inverted Curved Flexure Hinge With Torsional Reinforcements in a Printed Prosthetic Finger
,”
Proceedings of the 33rd ASPE Annual Meeting 2018
,
Las Vegas, NV
,
Nov. 4 – 9
, pp.
582
587
.
38.
Tilley
,
A. R.
,
2001
,
The Measure of Man and Woman: Human Factors in Design, Revised Edition
, Vol.
12
,
Whitney Library of Design
,
New York
.
39.
Hume
,
M. C.
,
Gellman
,
H.
,
McKellop
,
H.
, and
Brumfield Jr.
,
R. H.
,
1990
, “
Functional Range of Motion of the Joints of the Hand
,”
J. Hand Surgery
,
15
(
2
), pp.
240
243
.
40.
Bain
,
G. I.
,
Polites
,
N.
,
Higgs
,
B. G.
,
Heptinstall
,
R. J.
, and
McGrath
,
A. M.
,
2015
, “
The Functional Range of Motion of the Finger Joints
,”
J. Hand Surgery (European Volume)
,
40
(
4
), pp.
406
411
.
41.
Materialise
,
N. V.
,
2021
,
Datasheets 3D Printing Materials
, Vol.
6
,
Materialise NV
,
Leuven
.
42.
Bartsch
,
K.
,
Herzog
,
D.
,
Bossen
,
B.
, and
Emmelmann
,
C.
,
2021
, “
Material Modeling of Ti–6Al–4V Alloy Processed by Laser Powder Bed Fusion for Application in Macro-scale Process Simulation
,”
Mater. Sci. Eng. A.
,
814
, p.
141237
.
43.
Wu
,
Z.
,
Narra
,
S. P.
, and
Rollett
,
A.
,
2020
, “
Exploring the Fabrication Limits of Thin-Wall Structures in a Laser Powder Bed Fusion Process
,”
Int. J. Adv. Manuf. Technol.
,
110
(
1
), pp.
191
207
.
44.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4
,”
J. Laser. Appl.
,
27
(
S1
), p.
S14001
.
45.
Thomas
,
D. J.
,
2009
,
The Development of Design Rules for Selective Laser Melting
,
University of Wales Institute
,
Cardiff, UK
.
46.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Hu
,
Y.
,
2009
, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021005
.
47.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
, and
Bi
,
S.
,
2012
, “
A Family of Butterfly Flexural Joints: Q-LITF Pivots
,”
ASM J. Mech. Des.
,
134
(
12
), p.
121001
.
48.
Jonker
,
J. B.
, and
Meijaard
,
J. P.
,
1990
,
SPACAR—Computer Program for Dynamic Analysis of Flexible Spatial Mechanisms and Manipulators
,
Springer Berlin Heidelberg
,
Berlin/ Heidelberg
, pp.
123
143
.
49.
Wei
,
H.
,
Shirinzadeh
,
B.
,
Niu
,
X.
,
Zhang
,
J.
,
Li
,
W.
, and
Simeone
,
A.
,
2021
, “
Study of the Hinge Thickness Deviation for a 316L Parallelogram Flexure Mechanism Fabricated via Selective Laser Melting
,”
J. Intell. Manuf.
,
32
(
5
), pp.
1411
1420
.
You do not currently have access to this content.