Abstract

This paper develops an efficient reliability analysis method based on the improved radial basis function neural network (RBFNN) to increase the accuracy and efficiency of structural reliability analysis. To solve the problems of low computational accuracy and efficiency of the RBFNN, an improved RBFNN method is developed by transferring the sampling center of Latin hypercube sampling (LHS) from the mean values of random variables to the most probable point (MPP) in the sampling step. Then, the particle swarm optimization algorithm is adopted to optimize the shape parameters of RBFNN, and the RBFNN model is assessed by the cross-validation method for subsequent reliability analysis using Monte Carlo simulation (MCS). Four numerical examples are investigated to demonstrate the correctness and effectiveness of the proposed method. To compare the computational accuracy and efficiency of the proposed method, the traditional radial basis function method, hybrid radial basis neural network method, first-order reliability method (FORM), second-order reliability method (SORM), and MCS method are applied to solve each example. All the results demonstrate that the proposed method has higher accuracy and efficiency for structural reliability analysis. Importantly, one practical example of an industrial robot is provided here, which demonstrates that the developed method also has good applicability and effectiveness for complex engineering problems.

References

1.
Ouyang
,
H.
,
Liu
,
J.
,
Li
,
Z.
, and
Han
,
X.
,
2022
, “
A Novel Dynamic Model Updating Method for Composite Laminate Structures Considering Non-Probabilistic Uncertainties and Correlations
,”
Compos. Struct.
,
287
, p.
115359
.
2.
Jing
,
Z.
,
Chen
,
J.
, and
Li
,
X.
,
2019
, “
RBF-GA: An Adaptive Radial Basis Function Metamodeling With Genetic Algorithm for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
189
(
3
), pp.
42
57
.
3.
Li
,
H.
, and
Du
,
X.
,
2022
, “
Recovering Missing Component Dependence for System Reliability Prediction via Synergy Between Physics and Data
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041701
.
4.
Ouyang
,
H.
,
Liu
,
J.
,
Han
,
X.
,
Liu
,
G.
,
Ni
,
B.
, and
Zhang
,
D.
,
2020
, “
Correlation Propagation for Uncertainty Analysis of Structures Based on Non-Probabilistic Ellipsoidal Model
,”
Appl. Math. Model.
,
88
, pp.
190
207
.
5.
Zhang
,
D.
,
Shen
,
S.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2022
, “
An Advanced Mixed-Degree Cubature Formula for Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
400
, p.
115521
.
6.
Bagheri
,
M.
,
Zhu
,
S.-P.
,
Seghier
,
M. E. A. B.
,
Keshtegar
,
B.
, and
Trung
,
N.-T.
,
2021
, “
Hybrid Intelligent Method for Fuzzy Reliability Analysis of Corroded X100 Steel Pipelines
,”
Eng. Comput.
,
37
(
4
), pp.
2559
2573
.
7.
Xiao
,
N.-C
,
Yuan
,
K.
, and
Zhou
,
C.
,
2019
, “
Adaptive Kriging-Based Efficient Reliability Method for Structural Systems With Multiple Failure Modes and Mixed Variables
,”
Comput. Methods Appl. Mech. Eng.
,
359
, p.
112649
.
8.
Liu
,
J.
,
Ouyang
,
H.
,
Han
,
X.
, and
Liu
,
G.
,
2021
, “
Optimal Sensor Placement for Uncertain Inverse Problem of Structural Parameter Estimation
,”
Mech. Syst. Signal Process
,
160
(
5
), p.
107914
.
9.
Liu
,
X.
,
Wang
,
X.
,
Xie
,
J.
, and
Li
,
B.
,
2020
, “
Construction of Probability box Model Based on Maximum Entropy Principle and Corresponding Hybrid Reliability Analysis Approach
,”
Struct. Multidiscipl. Optim.
,
61
(
2
), pp.
599
617
.
10.
Ouyang
,
H.
,
Liu
,
J.
,
Han
,
X.
,
Ni
,
B.
,
Liu
,
G.
, and
Lin
,
Y.
,
2021
, “
Non-Probabilistic Uncertain Inverse Problem Method Considering Correlations for Structural Parameter Identification
,”
Struct. Multidiscipl. Optim.
,
64
(
3
), pp.
1327
1342
.
11.
Pan
,
Q.
, and
Dias
,
D.
,
2017
, “
An Efficient Reliability Method Combining Adaptive Support Vector Machine and Monte Carlo Simulation
,”
Struct. Saf.
,
67
, pp.
85
95
.
12.
Keshtegar
,
B.
, and
Chakraborty
,
S.
,
2017
, “
A Hybrid Self-Adaptive Conjugate First Order Reliability Method for Robust Structural Reliability Analysis
,”
Appl. Math. Model.
,
53
, pp.
319
332
.
13.
Zhang
,
D.
,
Zhang
,
J.
,
Yang
,
M.
,
Wang
,
R.
, and
Wu
,
Z.
,
2022
, “
An Enhanced Finite Step Length Method for Structural Reliability Analysis and Reliability-Based Design Optimization
,”
Struct. Multidiscipl. Optim.
,
65
(
8
), pp.
1
22
.
14.
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
.
15.
Bae
,
S.
,
Kim
,
N. H.
, and
Jang
,
S.-G.
,
2019
, “
System Reliability-Based Design Optimization Under Tradeoff Between Reduction of Sampling Uncertainty and Design Shift
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041403
.
16.
Zhang
,
D.
,
Liang
,
Y.
,
Cao
,
L.
,
Liu
,
J.
, and
Han
,
X.
,
2022
, “
Evidence-Theory-Based Reliability Analysis Through Kriging Surrogate Model
,”
ASME J. Mech. Des.
,
144
(
3
), p.
031701
.
17.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
18.
Zhang
,
D.
,
Jia
,
J.
,
Han
,
Z.
,
Ouyang
,
H.
,
Liu
,
J.
, and
Han
,
X.
,
2023
, “
An Efficient Uncertainty Quantification and Propagation Method Through Skewness and Kurtosis Fitting Region
,”
Struct. Multidiscipl. Optim.
,
36
(
2
), p.
66
.
19.
Wu
,
Z.
,
Wang
,
W.
,
Wang
,
D.
,
Zhao
,
K.
, and
Zhang
,
W.
,
2019
, “
Global Sensitivity Analysis Using Orthogonal Augmented Radial Basis Function
,”
Reliab. Eng. Syst. Saf.
,
185
(
11
), pp.
291
302
.
20.
Shayanfar
,
M.
,
Barkhordari
,
M.
, and
Barkhori
,
M.
,
2017
, “
Improving the First-Order Structural Reliability Estimation by Monte Carlo Simulation
,”
Proc. Inst. Civ. Eng.
,
170
(
2
), pp.
532
540
.
21.
Keshtegar
,
B.
, and
Kisi
,
O.
,
2017
, “
M5 Model Tree and Monte Carlo Simulation for Efficient Structural Reliability Analysis
,”
Appl. Math. Model.
,
48
(
22
), pp.
899
910
.
22.
Wang
,
J.
,
Gao
,
X.
,
Cao
,
R.
, and
Sun
,
Z.
,
2021
, “
A Multilevel Monte Carlo Method for Performing Time-Variant Reliability Analysis
,”
IEEE Access
,
9
, pp.
31773
31781
.
23.
Xu
,
J.
, and
Dang
,
C.
,
2019
, “
A New Bivariate Dimension Reduction Method for Efficient Structural Reliability Analysis
,”
Mech. Syst. Signal Process
,
115
(
10
), pp.
281
300
.
24.
Zhang
,
D.
,
Zhou
,
P.
,
Jiang
,
C.
,
Yang
,
M.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
A Stochastic Process Discretization Method Combing Active Learning Kriging Model for Efficient Time-Variant Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113990
.
25.
Ghohani Arab
,
H.
,
Rashki
,
M.
,
Rostamian
,
M.
,
Ghavidel
,
A.
,
Shahraki
,
H.
, and
Keshtegar
,
B.
,
2019
, “
Refined First-Order Reliability Method Using Cross-Entropy Optimization Method
,”
Eng. Comput.
,
35
(
4
), pp.
1507
1519
.
26.
Hu
,
Z.
, and
Du
,
X.
,
2019
, “
Efficient Reliability-Based Design With Second Order Approximations
,”
Eng. Optim.
,
51
(
1
), pp.
101
119
.
27.
Zhu
,
S.-P.
,
Keshtegar
,
B.
,
Chakraborty
,
S.
, and
Trung
,
N.-T.
,
2020
, “
Novel Probabilistic Model for Searching Most Probable Point in Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113027
.
28.
Wu
,
H.
,
Hu
,
Z.
, and
Du
,
X.
,
2021
, “
Time-Dependent System Reliability Analysis With Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.
29.
Yang
,
M.
,
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
New Efficient and Robust Method for Structural Reliability Analysis and Its Application in Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113018
.
30.
Rahman
,
S.
, and
Wei
,
D.
,
2006
, “
A Univariate Approximation at Most Probable Point for Higher-Order Reliability Analysis
,”
Int. J. Solids Struct.
,
43
(
9
), pp.
2820
2839
.
31.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
.
32.
Kang
,
S. B.
,
Park
,
J. W.
, and
Lee
,
I.
,
2017
, “
Accuracy Improvement of the Most Probable Point-Based Dimension Reduction Method Using the Hessian Matrix
,”
Int. J. Numer. Methods Eng.
,
111
(
3
), pp.
203
217
.
33.
Zhang
,
D.
,
Li
,
X.
,
Yang
,
M.
,
Wang
,
F.
, and
Han
,
X.
,
2023
, “
Non-Random Vibration Analysis of Rotate Vector Reducer
,”
J. Sound Vib.
,
542
, p.
117380
.
34.
Jiang
,
C.
,
Qiu
,
H.
,
Yang
,
Z.
,
Chen
,
L.
,
Gao
,
L.
, and
Li
,
P.
,
2019
, “
A General Failure-Pursuing Sampling Framework for Surrogate-Based Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
183
(
3
), pp.
47
59
.
35.
Wu
,
Z.
,
Wang
,
D.
,
Okolo N
,
P.
,
Hu
,
F.
, and
Zhang
,
W.
,
2016
, “
Global Sensitivity Analysis Using a Gaussian Radial Basis Function Metamodel
,”
Reliab. Eng. Syst. Saf.
,
154
, pp.
171
179
.
36.
Xiao
,
N.
,
Zhan
,
H.
, and
Yuan
,
K.
,
2020
, “
A New Reliability Method for Small Failure Probability Problems by Combining the Adaptive Importance Sampling and Surrogate Models
,”
Comput. Methods Appl. Mech. Eng.
,
372
(
10
), p.
113336
.
37.
Linxiong
,
H.
,
Huacong
,
L.
,
Kai
,
P.
, and
Hongliang
,
X.
,
2020
, “
A Novel Kriging Based Active Learning Method for Structural Reliability Analysis
,”
J. Mech. Sci. Technol.
,
34
(
4
), pp.
1545
1556
.
38.
Zafar
,
T.
,
Zhang
,
Y.
, and
Wang
,
Z.
,
2020
, “
An Efficient Kriging Based Method for Time-Dependent Reliability Based Robust Design Optimization via Evolutionary Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113386
.
39.
Yang
,
X.
,
Cheng
,
X.
,
Liu
,
Z.
, and
Wang
,
T.
,
2021
, “
A Novel Active Learning Method for Profust Reliability Analysis Based on the Kriging Model
,”
Eng. Comput.
,
38
(
S4
), pp.
3111
3124
.
40.
Zhang
,
X.
,
Pandey
,
M. D.
,
Yu
,
R.
, and
Wu
,
Z.
,
2021
, “
HALK: A Hybrid Active-Learning Kriging Approach and Its Applications for Structural Reliability Analysis
,”
Eng. Comput.
,
38
(
4
), pp.
3039
3055
.
41.
Vapnik
,
V.
,
1999
, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Networks
,
10
(
5
), pp.
988
999
.
42.
Su
,
H.
,
Lan
,
F.
,
He
,
Y.
, and
Chen
,
J.
,
2019
, “
Application of a New Local Effective Constrained Response Surface Method in Structural Reliability Optimization Design
,”
Eng. Comput.
,
36
(
3
), pp.
1055
1078
.
43.
Peng
,
X.
,
Qiu
,
C.
,
Li
,
J.
,
Wu
,
H.
,
Liu
,
Z.
, and
Jiang
,
S.
,
2021
, “
Multiple-Scale Uncertainty Optimization Design of Hybrid Composite Structures Based on Neural Network and Genetic Algorithm
,”
Compos. Struct.
,
262
, p.
113371
.
44.
Guo
,
H.
,
Zhou
,
J.
,
Koopialipoor
,
M.
,
Armaghani
,
D. J.
, and
Tahir
,
M. M.
,
2019
, “
Deep Neural Network and Whale Optimization Algorithm to Assess Flyrock Induced by Blasting
,”
Eng. Comput.
,
37
, pp.
173
186
.
45.
Deng
,
J.
,
Gu
,
D.
,
Li
,
X.
, and
Yue
,
Z. Q.
,
2005
, “
Structural Reliability Analysis for Implicit Performance Functions Using Artificial Neural Network
,”
Struct. Saf.
,
27
(
1
), pp.
25
48
.
46.
Deng
,
J.
,
2006
, “
Structural Reliability Analysis for Implicit Performance Function Using Radial Basis Function Network
,”
Int. J. Solids Struct.
,
43
(
11
), pp.
3255
3291
.
47.
Dai
,
H. Z.
,
Zhao
,
W.
,
Wang
,
W.
, and
Cao
,
Z. G.
,
2011
, “
An Improved Radial Basis Function Network for Structural Reliability Analysis
,”
J. Mech. Sci. Technol.
,
25
(
9
), pp.
2151
2159
.
48.
Chau
,
M. Q.
,
Han
,
X.
,
Bai
,
Y. C.
, and
Jiang
,
C.
,
2012
, “
A Structural Reliability Analysis Method Based on Radial Basis Function
,”
Comput. Mater. Contin.
,
27
(
2
), pp.
128
142
.
49.
Li
,
X.
,
Gong
,
C.
,
Gu
,
L.
,
Gao
,
W.
,
Jing
,
Z.
, and
Su
,
H.
,
2018
, “
A Sequential Surrogate Method for Reliability Analysis Based on Radial Basis Function
,”
Struct. Saf.
,
73
, pp.
42
53
.
50.
Wang
,
Q.
,
Fang
,
H.
, and
Shen
,
L.
,
2016
, “
Reliability Analysis of Tunnels Using a Metamodeling Technique Based on Augmented Radial Basis Functions
,”
Tunnelling Underground Space Technol.
,
56
, pp.
45
53
.
51.
Shi
,
L.
,
Sun
,
B.
, and
Ibrahim
,
D. S.
,
2019
, “
An Active Learning Reliability Method With Multiple Kernel Functions Based on Radial Basis Function
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
211
229
.
52.
Hong
,
L.
,
Li
,
H.
, and
Peng
,
K.
,
2021
, “
A Combined Radial Basis Function and Adaptive Sequential Sampling Method for Structural Reliability Analysis
,”
Appl. Math. Model.
,
90
(
11
), pp.
375
393
.
53.
Kang
,
F.
,
Li
,
J.
, and
Xu
,
Q.
,
2017
, “
System Reliability Analysis of Slopes Using Multilayer Perceptron and Radial Basis Function Networks
,”
Int. J. Numer. Anal. Methods Geomech.
,
41
(
18
), pp.
1962
1978
.
54.
Wang
,
Q.
, and
Fang
,
H.
,
2018
, “
Reliability Analysis of Tunnels Using an Adaptive RBF and a First-Order Reliability Method
,”
Comput. Geotech.
,
98
, pp.
144
152
.
55.
Zhang
,
D.
,
Zhang
,
N.
,
Ye
,
N.
,
Fang
,
J.
, and
Han
,
X.
,
2021
, “
Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis
,”
IEEE Trans. Reliab.
,
70
(
3
), pp.
887
900
.
56.
Liu
,
X.
,
Liu
,
X.
,
Zhou
,
Z.
, and
Hu
,
L.
,
2021
, “
An Efficient Multi-Objective Optimization Method Based on the Adaptive Approximation Model of the Radial Basis Function
,”
Struct. Multidiscipl. Optim.
,
63
(
3
), pp.
1385
1403
.
57.
Fasshauer
,
G.
, and
Zhang
,
J.
,
2007
, “
On Choosing “Optimal” Shape Parameters for RBF Approximation
,”
Numer. Algorithms
,
45
(
1–4
), pp.
345
368
.
58.
Cheng
,
J.
,
Li
,
Q.
, and
Xiao
,
R.
,
2008
, “
A New Artificial Neural Network-Based Response Surface Method for Structural Reliability Analysis
,”
Probabilistic Eng. Mech.
,
23
(
1
), pp.
51
63
.
59.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.
60.
Rajashekhar
,
M.
, and
Ellingwood
,
B.
,
1993
, “
A New Look at the Response Surface Approach for Reliability Analysis
,”
Struct. Saf.
,
12
(
3
), pp.
205
220
.
61.
Schueremans
,
L.
, and
Van Gemert
,
D.
,
2005
, “
Benefit of Splines and Neural Networks in Simulation Based Structural Reliability Analysis
,”
Struct. Saf.
,
27
(
3
), pp.
246
261
.
62.
Huang
,
X.
,
Chen
,
J.
, and
Zhu
,
H.
,
2016
, “
Assessing Small Failure Probabilities by AK–SS: An Active Learning Method Combining Kriging and Subset Simulation
,”
Struct. Saf.
,
59
, pp.
86
95
.
63.
Zhang
,
D.
,
Shen
,
S.
,
Wu
,
J.
,
Wang
,
F.
, and
Han
,
X.
,
2023
, “
Kinematic Trajectory Accuracy Reliability Analysis for Industrial Robots Considering Intercorrelations Among Multi-Point Positioning Errors
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108808
.
64.
Corke
,
P. I.
,
1996
, “
A Robotics Toolbox for MATLAB
,”
IEEE Rob. Autom. Mag.
,
3
(
1
), pp.
24
32
.
You do not currently have access to this content.